Earthquake Science And Engineering
Download Earthquake Science And Engineering full books in PDF, epub, and Kindle. Read online free Earthquake Science And Engineering ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Ömer Aydan |
Publisher | : CRC Press |
Total Pages | : 519 |
Release | : 2022-07-18 |
Genre | : Technology & Engineering |
ISBN | : 1000601595 |
Earthquakes form one of the categories of natural disasters that sometimes result in huge loss of human life as well as destruction of (infra)structures, as experienced during recent great earthquakes. This book addresses scientific and engineering aspects of earthquakes, which are generally taught and published separately. This book intends to fill the gap between these two fields associated with earthquakes and help seismologists and earthquake engineers better communicate with and understand each other. This will foster the development of new techniques for dealing with various aspects of earthquakes and earthquake-associated issues, to safeguard the security and welfare of societies worldwide. Because this work covers both scientific and engineering aspects in a unified way, it offers a complete overview of earthquakes, their mechanics, their effects on (infra)structures and secondary associated events. As such, this book is aimed at engineering professionals with an earth sciences background (geology, seismology, geophysics) or those with an engineering background (civil, architecture, mining, geological engineering) or with both, and it can also serve as a reference work for academics and (under)graduate students.
Author | : Sitharam, T.G. |
Publisher | : IGI Global |
Total Pages | : 292 |
Release | : 2012-04-30 |
Genre | : Technology & Engineering |
ISBN | : 1466609168 |
Disaster preparedness and response management is a burgeoning field of technological research, and staying abreast of the latest developments within the field is a difficult task. Geotechnical Applications for Earthquake Engineering: Research Advancements has collected chapters from experts from around the world in a variety of applications, frameworks, and methodologies, and prepared them in a form that serves as a handy reference and research guide to practitioners and academics alike. By protecting society with earthquake engineering, the latest research can make the world a safer place.
Author | : National Research Council |
Publisher | : National Academies Press |
Total Pages | : 431 |
Release | : 2003-09-22 |
Genre | : Science |
ISBN | : 0309065623 |
The destructive force of earthquakes has stimulated human inquiry since ancient times, yet the scientific study of earthquakes is a surprisingly recent endeavor. Instrumental recordings of earthquakes were not made until the second half of the 19th century, and the primary mechanism for generating seismic waves was not identified until the beginning of the 20th century. From this recent start, a range of laboratory, field, and theoretical investigations have developed into a vigorous new discipline: the science of earthquakes. As a basic science, it provides a comprehensive understanding of earthquake behavior and related phenomena in the Earth and other terrestrial planets. As an applied science, it provides a knowledge base of great practical value for a global society whose infrastructure is built on the Earth's active crust. This book describes the growth and origins of earthquake science and identifies research and data collection efforts that will strengthen the scientific and social contributions of this exciting new discipline.
Author | : Michael Beer |
Publisher | : Springer |
Total Pages | : 3953 |
Release | : 2016-01-30 |
Genre | : Technology & Engineering |
ISBN | : 9783642353437 |
The Encyclopedia of Earthquake Engineering is designed to be the authoritative and comprehensive reference covering all major aspects of the science of earthquake engineering, specifically focusing on the interaction between earthquakes and infrastructure. The encyclopedia comprises approximately 300 contributions. Since earthquake engineering deals with the interaction between earthquake disturbances and the built infrastructure, the emphasis is on basic design processes important to both non-specialists and engineers so that readers become suitably well informed without needing to deal with the details of specialist understanding. The encyclopedia’s content provides technically-inclined and informed readers about the ways in which earthquakes can affect our infrastructure and how engineers would go about designing against, mitigating and remediating these effects. The coverage ranges from buildings, foundations, underground construction, lifelines and bridges, roads, embankments and slopes. The encyclopedia also aims to provide cross-disciplinary and cross-domain information to domain-experts. This is the first single reference encyclopedia of this breadth and scope that brings together the science, engineering and technological aspects of earthquakes and structures.
Author | : Susan Elizabeth Hough |
Publisher | : Princeton University Press |
Total Pages | : 257 |
Release | : 2018-06-05 |
Genre | : Science |
ISBN | : 0691186871 |
This is the first book to really make sense of the dizzying array of information that has emerged in recent decades about earthquakes. Susan Hough, a research seismologist in one of North America's most active earthquake zones and an expert at communicating this complex science to the public, separates fact from fiction. She fills in many of the blanks that remained after plate tectonics theory, in the 1960s, first gave us a rough idea of just what earthquakes are about. How do earthquakes start? How do they stop? Do earthquakes occur at regular intervals on faults? If not, why not? Are earthquakes predictable? How hard will the ground shake following an earthquake of a given magnitude? How does one quantify future seismic hazard? As Hough recounts in brisk, jargon-free prose, improvements in earthquake recording capability in the 1960s and 1970s set the stage for a period of rapid development in earthquake science. Although some formidable enigmas have remained, much has been learned on critical issues such as earthquake prediction, seismic hazard assessment, and ground motion prediction. This book addresses those issues. Because earthquake science is so new, it has rarely been presented outside of technical journals that are all but opaque to nonspecialists. Earthshaking Science changes all this. It tackles the issues at the forefront of modern seismology in a way most readers can understand. In it, an expert conveys not only the facts, but the passion and excitement associated with research at the frontiers of this fascinating field. Hough proves, beyond a doubt, that this passion and excitement is more accessible than one might think.
Author | : J. Solnes |
Publisher | : Springer |
Total Pages | : 332 |
Release | : 1974-08-31 |
Genre | : Science |
ISBN | : |
by Julius S6lnes An Advanced Study Institute on engineering seismology and earthquake engineering was held in Izrrir, 'rurkey July 2-13, 1973 under the auspices of the Scientific Affairs Division of NATO. The Institute was organized by an organizing committee headed by the two scientific directors and with representation by the Turkish National Science Foundation, Turkish National Committee for Earthquake Engineering, the Middle East Technical University and the Aegean University. 93 scientists and engineers of 18 countries took part in the work of the Institute which comprised 10 working days with lectures, discussions and panel meetings. The main lecture topics of the Institute were covered in five main sections: 1. Generic causes of earthquakes. 2. Ground motion and foundation response. 3. Earthquake response of structures and design consi derations. 4. Codes and regulations; implementation. 5. Earthquake hazards and emergency planning. Upon completion of each section, general discussion and short presentations by several of the participants took place and summary statements were offered by the main lecturers. The atmosphere of the meetings was in- VI formal and cordial thus giving rise to many unorthodox and newly conceived ideas.
Author | : Mihail Garevski |
Publisher | : Springer Science & Business Media |
Total Pages | : 560 |
Release | : 2010-08-05 |
Genre | : Science |
ISBN | : 9048195446 |
This book contains 9 invited keynote and 12 theme lectures presented at the 14th European Conference on Earthquake Engineering (14ECEE) held in Ohrid, Republic of Macedonia, from August 30 to September 3, 2010. The conference was organized by the Macedonian Association for Earthquake Engineering (MAEE), under the auspices of European Association for Earthquake Engineering (EAEE). The book is organized in twenty one state-of-the-art papers written by carefully selected very eminent researchers mainly from Europe but also from USA and Japan. The contributions provide a very comprehensive collection of topics on earthquake engineering, as well as interdisciplinary subjects such as engineering seismology and seismic risk assessment and management. Engineering seismology, geotechnical earthquake engineering, seismic performance of buildings, earthquake resistant engineering structures, new techniques and technologies and managing risk in seismic regions are all among the different topics covered in this book. The book also includes the First Ambraseys Distinguished Award Lecture given by Prof. Theo P. Tassios in the honor of Prof. Nicholas N. Ambraseys. The aim is to present the current state of knowledge and engineering practice, addressing recent and ongoing developments while also projecting innovative ideas for future research and development. It is not always possible to have so many selected manuscripts within the broad spectrum of earthquake engineering thus the book is unique in one sense and may serve as a good reference book for researchers in this field. Audience: This book will be of interest to civil engineers in the fields of geotechnical and structural earthquake engineering; scientists and researchers in the fields of seismology, geology and geophysics. Not only scientists, engineers and students, but also those interested in earthquake hazard assessment and mitigation will find in this book the most recent advances.
Author | : William H.K. Lee |
Publisher | : Elsevier |
Total Pages | : 994 |
Release | : 2002-09-27 |
Genre | : Science |
ISBN | : 0080489222 |
Modern scientific investigations of earthquakes began in the 1880s, and the International Association of Seismology was organized in 1901 to promote collaboration of scientists and engineers in studying earthquakes. The International Handbook of Earthquake and Engineering Seismology, under the auspices of the International Association of Seismology and Physics of the Earth's Interior (IASPEI), was prepared by leading experts under a distinguished international advisory board and team of editors.The content is organized into 56 chapters and includes over 430 figures, 24 of which are in color. This large-format, comprehensive reference summarizes well-established facts, reviews relevant theories, surveys useful methods and techniques, and documents and archives basic seismic data. It will be the authoritative reference for scientists and engineers and a quick and handy reference for seismologists.Also available is The International Handbook of Earthquake and Engineering Seismology, Part B.
Author | : Ikuo Towhata |
Publisher | : Springer Science & Business Media |
Total Pages | : 698 |
Release | : 2008-12-19 |
Genre | : Science |
ISBN | : 3540357831 |
This fascinating new book examines the issues of earthquake geotechnical engineering in a comprehensive way. It summarizes the present knowledge on earthquake hazards and their causative mechanisms as well as a number of other relevant topics. Information obtained from earthquake damage investigation (such as ground motion, landslides, earth pressure, fault action, or liquefaction) as well as data from laboratory tests and field investigation is supplied, together with exercises/questions.
Author | : Plevris, Vagelis |
Publisher | : IGI Global |
Total Pages | : 456 |
Release | : 2012-05-31 |
Genre | : Technology & Engineering |
ISBN | : 1466616415 |
Throughout the past few years, there has been extensive research done on structural design in terms of optimization methods or problem formulation. But, much of this attention has been on the linear elastic structural behavior, under static loading condition. Such a focus has left researchers scratching their heads as it has led to vulnerable structural configurations. What researchers have left out of the equation is the element of seismic loading. It is essential for researchers to take this into account in order to develop earthquake resistant real-world structures. Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications focuses on the research around earthquake engineering, in particular, the field of implementation of optimization algorithms in earthquake engineering problems. Topics discussed within this book include, but are not limited to, simulation issues for the accurate prediction of the seismic response of structures, design optimization procedures, soft computing applications, and other important advancements in seismic analysis and design where optimization algorithms can be implemented. Readers will discover that this book provides relevant theoretical frameworks in order to enhance their learning on earthquake engineering as it deals with the latest research findings and their practical implementations, as well as new formulations and solutions.