Seismic Design and Retrofit of Bridges

Seismic Design and Retrofit of Bridges
Author: M. J. N. Priestley
Publisher: John Wiley & Sons
Total Pages: 704
Release: 1996-04-12
Genre: Technology & Engineering
ISBN: 9780471579984

Because of their structural simplicity, bridges tend to beparticularly vulnerable to damage and even collapse when subjectedto earthquakes or other forms of seismic activity. Recentearthquakes, such as the ones in Kobe, Japan, and Oakland,California, have led to a heightened awareness of seismic risk andhave revolutionized bridge design and retrofit philosophies. In Seismic Design and Retrofit of Bridges, three of the world's topauthorities on the subject have collaborated to produce the mostexhaustive reference on seismic bridge design currently available.Following a detailed examination of the seismic effects of actualearthquakes on local area bridges, the authors demonstrate designstrategies that will make these and similar structures optimallyresistant to the damaging effects of future seismicdisturbances. Relying heavily on worldwide research associated with recentquakes, Seismic Design and Retrofit of Bridges begins with anin-depth treatment of seismic design philosophy as it applies tobridges. The authors then describe the various geotechnicalconsiderations specific to bridge design, such as soil-structureinteraction and traveling wave effects. Subsequent chapters coverconceptual and actual design of various bridge superstructures, andmodeling and analysis of these structures. As the basis for their design strategies, the authors' focus is onthe widely accepted capacity design approach, in which particularlyvulnerable locations of potentially inelastic flexural deformationare identified and strengthened to accommodate a greater degree ofstress. The text illustrates how accurate application of thecapacity design philosophy to the design of new bridges results instructures that can be expected to survive most earthquakes withonly minor, repairable damage. Because the majority of today's bridges were built before thecapacity design approach was understood, the authors also devoteseveral chapters to the seismic assessment of existing bridges,with the aim of designing and implementing retrofit measures toprotect them against the damaging effects of future earthquakes.These retrofitting techniques, though not considered appropriate inthe design of new bridges, are given considerable emphasis, sincethey currently offer the best solution for the preservation ofthese vital and often historically valued thoroughfares. Practical and applications-oriented, Seismic Design and Retrofit ofBridges is enhanced with over 300 photos and line drawings toillustrate key concepts and detailed design procedures. As the onlytext currently available on the vital topic of seismic bridgedesign, it provides an indispensable reference for civil,structural, and geotechnical engineers, as well as students inrelated engineering courses. A state-of-the-art text on earthquake-proof design and retrofit ofbridges Seismic Design and Retrofit of Bridges fills the urgent need for acomprehensive and up-to-date text on seismic-ally resistant bridgedesign. The authors, all recognized leaders in the field,systematically cover all aspects of bridge design related toseismic resistance for both new and existing bridges. * A complete overview of current design philosophy for bridges,with related seismic and geotechnical considerations * Coverage of conceptual design constraints and their relationshipto current design alternatives * Modeling and analysis of bridge structures * An exhaustive look at common building materials and theirresponse to seismic activity * A hands-on approach to the capacity design process * Use of isolation and dissipation devices in bridge design * Important coverage of seismic assessment and retrofit design ofexisting bridges

Dynamic Analysis and Earthquake Resistant Design

Dynamic Analysis and Earthquake Resistant Design
Author: Japanese Society of Civil Engineers
Publisher: CRC Press
Total Pages: 134
Release: 2021-07-29
Genre: Technology & Engineering
ISBN: 1000446492

The second volume in a projected series on dynamic analysis and earthquake resistant design, this text includes topics such as: dynamic analysis of soil-structure interaction system, rupture of ground due to earthquake and its prediciton, basic method response calculations and nonlinear problems.

Bridge Engineering

Bridge Engineering
Author: Weiwei Lin
Publisher: Butterworth-Heinemann
Total Pages: 294
Release: 2017-05-11
Genre: Technology & Engineering
ISBN: 0128044330

Bridge Engineering: Classifications, Design Loading, and Analysis Methods begins with a clear and concise exposition of theory and practice of bridge engineering, design and planning, materials and construction, loads and load distribution, and deck systems. This is followed by chapters concerning applications for bridges, such as: Reinforced and Prestressed Concrete Bridges, Steel Bridges, Truss Bridges, Arch Bridges, Cable Stayed Bridges, Suspension Bridges, Bridge Piers, and Bridge Substructures. In addition, the book addresses issues commonly found in inspection, monitoring, repair, strengthening, and replacement of bridge structures. - Includes easy to understand explanations for bridge classifications, design loading, analysis methods, and construction - Provides an overview of international codes and standards - Covers structural features of different types of bridges, including beam bridges, arch bridges, truss bridges, suspension bridges, and cable-stayed bridges - Features step-by-step explanations of commonly used structural calculations along with worked out examples

Tohoku, Japan, Earthquake and Tsunami of 2011

Tohoku, Japan, Earthquake and Tsunami of 2011
Author: Gary Chock
Publisher: ASCE Publications
Total Pages: 359
Release: 2013
Genre: Technology & Engineering
ISBN: 9780784412497

Sponsored by the Structural Engineering Institute of ASCE. On March 11, 2011, at 2:46 p.m. local time, the Great East Japan Earthquake with moment magnitude 9.0 generated a tsunami of unprecedented height and spatial extent along the northeast coast of the main island of Honshu. The Japanese government estimated that more than 250,000 buildings either collapsed or partially collapsed predominantly from the tsunami. The tsunami spread destruction inland for several kilometers, inundating an area of 525 square kilometers, or 207 square miles. About a month after the tsunami, ASCE?s Structural Engineering Institute sent a Tsunami Reconnaissance Team to Tohoku, Japan, to investigate and document the performance of buildings and other structures affected by the tsunami. For more than two weeks, the team examined nearly every town and city that suffered significant tsunami damage, focusing on buildings, bridges, and coastal protective structures within the inundation zone along the northeast coast region of Honshu. This report presents the sequence of tsunami warning and evacuation, tsunami flow velocities, and debris loading. The authors describe the performance, types of failure, and scour effects for a variety of structures: buildings, including low-rise and residential structuresrailway and roadway bridgesseawalls and tsunami barriers breakwaterspiers, quays, and wharvesstorage tanks, towers, and cranes. Additional chapters analyze failure modes utilizing detailed field data collection and describe economic impacts and initial recovery efforts. Each chapter is plentifully illustrated with photographs and contains a summary of findings. For structural engineers, the observations and analysis in this report provide critical information for designing buildings, bridges, and other structures that can withstand the effects of tsunami inundation.

Earthquake-Resistant Structures

Earthquake-Resistant Structures
Author: Mohiuddin Ali Khan
Publisher: Butterworth-Heinemann
Total Pages: 437
Release: 2013-03-18
Genre: Technology & Engineering
ISBN: 0080949444

Earthquake engineering is the ultimate challenge for structural engineers. Even if natural phenomena involve great uncertainties, structural engineers need to design buildings, bridges, and dams capable of resisting the destructive forces produced by them. These disasters have created a new awareness about the disaster preparedness and mitigation. Before a building, utility system, or transportation structure is built, engineers spend a great deal of time analyzing those structures to make sure they will perform reliably under seismic and other loads. The purpose of this book is to provide structural engineers with tools and information to improve current building and bridge design and construction practices and enhance their sustainability during and after seismic events. In this book, Khan explains the latest theory, design applications and Code Provisions. Earthquake-Resistant Structures features seismic design and retrofitting techniques for low and high raise buildings, single and multi-span bridges, dams and nuclear facilities. The author also compares and contrasts various seismic resistant techniques in USA, Russia, Japan, Turkey, India, China, New Zealand, and Pakistan. - Written by a world renowned author and educator - Seismic design and retrofitting techniques for all structures - Tools improve current building and bridge designs - Latest methods for building earthquake-resistant structures - Combines physical and geophysical science with structural engineering