Earth Soundings Analysis

Earth Soundings Analysis
Author: Jon F. Claerbout
Publisher: Wiley-Blackwell
Total Pages: 304
Release: 1992
Genre: Science
ISBN: 9780865422100

(3E 1990) Import

Electromagnetic Sounding of the Earth's Interior

Electromagnetic Sounding of the Earth's Interior
Author: Viacheslav V. Spichak
Publisher: Elsevier
Total Pages: 458
Release: 2015-07-02
Genre: Science
ISBN: 0444635572

Electromagnetic Sounding of the Earth's Interior 2nd edition provides a comprehensive up-to-date collection of contributions, covering methodological, computational and practical aspects of Electromagnetic sounding of the Earth by different techniques at global, regional and local scales. Moreover, it contains new developments such as the concept of self-consistent tasks of geophysics and , 3-D interpretation of the TEM sounding which, so far, have not all been covered by one book. Electromagnetic Sounding of the Earth's Interior 2nd edition consists of three parts: I- EM sounding methods, II- Forward modelling and inversion techniques, and III - Data processing, analysis, modelling and interpretation. The new edition includes brand new chapters on Pulse and frequency electromagnetic sounding for hydrocarbon offshore exploration. Additionally all other chapters have been extensively updated to include new developments. - Presents recently developed methodological findings of the earth's study, including seismoelectrical and renewed magnetovariational approaches - Provides methodological guidelines for Electromagnetic data interpretation in various geological environments - Contains a balanced set of lectures covering all aspects of Electromagnetic sounding at global, regional and local levels along with case studies, highlighting the practical importance of electromagnetic data - Updates current findings in the field, in particular MT, magnetovariational and seismo-electrical methods and the practice of 3D interpretations

Induction Soundings of the Earth's Mantle

Induction Soundings of the Earth's Mantle
Author: Vladimir Semenov
Publisher: Springer
Total Pages: 114
Release: 2017-07-27
Genre: Science
ISBN: 3319537954

At the heart of this book is the generalized theoretical approach that is applied to investigate the geoelectrical structure of the Earth’s mantle. It also analyzes the results of regional and global induction sounding of the Earth’s mantle and compares them with the results obtained by other geophysical methods. The generalized theoretical approach employs the Induction Law as a basis for identifying extended relations between magnetic field components, including their plane divergence, impedances and spatial derivatives. The estimations of impedance values and spatial derivatives are performed using the theory of stochastic processes. The book also considers the external sources of magnetic fields used for sounding the Earths mantle from the modern theory perspective, as well as the problem of coincidence of magneto-variation and magnetotelluric methods. Further, it discusses secular variations in the Earth’s resistance caused by non-induction sources, factors that are correlated with the number of earthquakes in the region and shifted in time with global indexes. It is a valuable resource for scientists applying deep induction soundings or interested in the structures of and processes in the Earth’s interior.

Inverse Methods for Atmospheric Sounding

Inverse Methods for Atmospheric Sounding
Author: Clive D. Rodgers
Publisher: World Scientific
Total Pages: 256
Release: 2000
Genre: Science
ISBN: 981022740X

Annotation Rodgers (U. of Oxford) provides graduate students and other researchers a background to the inverse problem and its solution, with applications relating to atmospheric measurements. He introduces the stages in the reverse order than the usual approach in order to develop the learner's intuition about the nature of the inverse problem. Annotation copyrighted by Book News, Inc., Portland, OR.

Earth Soundings Analysis

Earth Soundings Analysis
Author: Jon F. Claerbout
Publisher:
Total Pages:
Release: 1993
Genre: Anisotropy
ISBN:

The first work describes the analysis of echo soundings in seismic prospecting. The progress reports describe activities of the Stanford Exploration Project regarding seismic echo soundings.

Deep Seismic Sounding of the Earth’s Crust and Upper Mantle

Deep Seismic Sounding of the Earth’s Crust and Upper Mantle
Author: Irina P. Kosminskaya
Publisher: Springer Science & Business Media
Total Pages: 187
Release: 2012-12-06
Genre: Science
ISBN: 1468478672

Deep seismiC sounding was proposed by G. A. Gamburtsev and developed under his guid ance during the period 1948-1955 at the Institute of Physics of the Earth of the Academy of Sciences of the USSR. During that period also, the first geophysical results concerning the deep structure of the earth's crust in several regions in Tien-Shan, the Pamir, and Turkmenia were observed. Beginning with 1956, the deep seismic sounding method has been used widely by geo physical research groups as well as by geophysical service organizations for regional studies in the USSR. Descriptions of this work have been given in reports by Yu. N. Godin, V. V. Fedynskii, D. N. Kazanli, and others. New variants of the deep seismic sounding method have been developed; continuous profiling (Yu. N. Godin, and others), and point soundings (N. N. Puzyrev, and others). Deep seismic soundings have been carried on outside of Russia also, and studies have been carried out on the use of the deep seismic sounding method in marine applications (E. I. Gal'perin, S. M. Zverev, 1. P. Kosminskaya, Yu. P. Neprochnov, and others). OVer the past decade, the deep seismic sounding method has joined the suite of geo physical studies as a highly detailed method for studying the earth's crust and upper mantle to depths of 50 to 100 km on land, and of 15 to 25 km in the deep oceans.

Tomography of the Earth’s Crust: From Geophysical Sounding to Real-Time Monitoring

Tomography of the Earth’s Crust: From Geophysical Sounding to Real-Time Monitoring
Author: Michael Weber
Publisher: Springer Science & Business Media
Total Pages: 179
Release: 2014-02-17
Genre: Science
ISBN: 331904205X

The research work on the topic of ‘‘Tomography of the Earth’s Crust: From Geophysical Sounding to Real-Time Monitoring’’ has focused on the development of cross-scale multiparameter methods and their technological application together with the development of innovative field techniques. Seismic wave field inversion theory, diffusion and potential methods were developed and optimized with respect to cost and benefit aspects. This volume summarizes the scientific results of nine interdisciplinary joint projects funded by the German Federal Ministry of Education and Research in the framework of the Research and Development Program GEOTECHNOLOGIEN. Highlights and innovations presented cover many length scales and involve targets ranging from applications in the laboratory, to ground water surveys of heterogeneous aquifer, geotechnical applications like tunnel excavation, coal mine and CO2 monitoring and the imaging and monitoring of tectonic and societally relevant objects as active faults and volcanoes. To study these objects, the authors use the full spectrum of geophysical methods (ultrasonics, seismic and seismology, electromagnetics, gravity, and airborne) in combination with new methods like seismic interferometry, diffuse wave field theory and full-wave-form inversion in 3D and partially also in 4D. Geophysical Sounding to Real-Time Monitoring’’ has focused on the development of cross-scale multiparameter methods and their technological application together with the development of innovative field techniques. Seismic wave field inversion theory, diffusion and potential methods were developed and optimized with respect to cost and benefit aspects. This volume summarizes the scientific results of nine interdisciplinary joint projects funded by the German Federal Ministry of Education and Research in the framework of the Research and Development Program GEOTECHNOLOGIEN. Highlights and innovations presented cover many length scales and involve targets ranging from applications in the laboratory, to ground water surveys of heterogeneous aquifer, geotechnical applications like tunnel excavation, coal mine and CO2 monitoring and the imaging and monitoring of tectonic and societally relevant objects as active faults and volcanoes. To study these objects, the authors use the full spectrum of geophysical methods (ultrasonics, seismic and seismology, electromagnetics, gravity, and airborne) in combination with new methods like seismic interferometry, diffuse wave field theory and full-wave-form inversion in 3D and partially also in 4D. 2 monitoring and the imaging and monitoring of tectonic and societally relevant objects as active faults and volcanoes. To study these objects, the authors use the full spectrum of geophysical methods (ultrasonics, seismic and seismology, electromagnetics, gravity, and airborne) in combination with new methods like seismic interferometry, diffuse wave field theory and full-wave-form inversion in 3D and partially also in 4D.

Earth Resources

Earth Resources
Author:
Publisher:
Total Pages: 910
Release: 1976
Genre: Astronautics in earth sciences
ISBN:

Seismic Inversion

Seismic Inversion
Author: Gerard T. Schuster
Publisher: SEG Books
Total Pages: 377
Release: 2017-07-01
Genre: Science
ISBN: 156080341X

This book describes the theory and practice of inverting seismic data for the subsurface rock properties of the earth. The primary application is for inverting reflection and/or transmission data from engineering or exploration surveys, but the methods described also can be used for earthquake studies. Seismic Inversion will be of benefit to scientists and advanced students in engineering, earth sciences, and physics. It is desirable that the reader has some familiarity with certain aspects of numerical computation, such as finite-difference solutions to partial differential equations, numerical linear algebra, and the basic physics of wave propagation. For those not familiar with the terminology and methods of seismic exploration, a brief introduction is provided. To truly understand the nuances of seismic inversion, we have to actively practice what we preach (or teach). Therefore, computational labs are provided for most of the chapters, and some field data labs are given as well.