Earth Radiation

Earth Radiation
Author: Käthe Bachler
Publisher: Holistic Intuition Society
Total Pages: 254
Release: 2007
Genre: Health & Fitness
ISBN: 0968632351

The authors compile a record of the identification and location of energies from the Earth which are noxious to human beings and others.

Modeling Solar Radiation at the Earth's Surface

Modeling Solar Radiation at the Earth's Surface
Author: Viorel Badescu
Publisher: Springer Science & Business Media
Total Pages: 537
Release: 2008-02-01
Genre: Technology & Engineering
ISBN: 3540774556

Solar radiation data is important for a wide range of applications, e.g. in engineering, agriculture, health sector, and in many fields of the natural sciences. A few examples showing the diversity of applications may include: architecture and building design, e.g. air conditioning and cooling systems; solar heating system design and use; solar power generation; evaporation and irrigation; calculation of water requirements for crops; monitoring plant growth and disease control; skin cancer research.

The Dynamic Loss of Earth's Radiation Belts

The Dynamic Loss of Earth's Radiation Belts
Author: Allison Jaynes
Publisher: Elsevier
Total Pages: 346
Release: 2019-09-05
Genre: Science
ISBN: 0128133996

The Dynamic Loss of Earth's Radiation Belts: From Loss in the Magnetosphere to Particle Precipitation in the Atmosphere presents a timely review of data from various explorative missions, including the Van Allen Probes, the Magnetospheric Multiscale Mission (which aims to determine magnetopause losses), the completion of four BARREL balloon campaigns, and several CubeSat missions focusing on precipitation losses. This is the first book in the area to include a focus on loss, and not just acceleration and radial transport. Bringing together two communities, the book includes contributions from experts with knowledge in both precipitation mechanisms and the effects on the atmosphere. There is a direct link between what gets lost in the magnetospheric radiation environment and the energy deposited in the layers of our atmosphere. Very recently, NASA's Living With a Star program identified a new, targeted research topic that addresses this question, highlighting the timeliness of this precise science. The Dynamic Loss of Earth's Radiation Belts brings together scientists from the space and atmospheric science communities to examine both the causes and effects of particle loss in the magnetosphere. - Examines both the causes and effects of particle loss in the magnetosphere from multiple perspectives - Presents interdisciplinary content that bridges the gap, through communication and collaboration, between the magnetospheric and atmospheric communities - Fills a gap in the literature by focusing on loss in the radiation belt, which is especially timely based on data from the Van Allen Probes, the Magnetospheric Multiscale Mission, and other projects - Includes contributions from various experts in the field that is organized and collated by a clear-and-consistent editorial team

Radiation and Radioactivity on Earth and Beyond

Radiation and Radioactivity on Earth and Beyond
Author: Ivan G. Draganic
Publisher: CRC Press
Total Pages: 372
Release: 2020-08-26
Genre: Science
ISBN: 1000144372

This book features information regarding the Chernobyl nuclear accident, the production of elementary particles, radiation exposure, the geopolitical effects of the end of the nuclear arms race between the U.S. and the former Soviet Union, and the future of nuclear power.

An Introduction To Solar Radiation

An Introduction To Solar Radiation
Author: Muhammad Iqbal
Publisher: Elsevier
Total Pages: 409
Release: 2012-12-02
Genre: Science
ISBN: 0323151817

An Introduction to Solar Radiation is an introductory text on solar radiation, with emphasis on the methods of calculation for determining the amount of solar radiation incident on a surface on the earth. Topics covered include the astronomical relationship between the sun and the earth; thermal radiation; the solar constant and its spectral distribution; and extraterrestrial solar irradiation. This book is comprised of 12 chapters and begins with an overview of the trigonometric relationships between the sun-earth line and the position of an inclined surface, followed by a discussion on the characteristics of blackbody radiation. The next chapter focuses on the solar constant and its spectral distribution, paying particular attention to extraterrestrial solar spectral irradiance and the sun's blackbody temperature. Subsequent chapters explore extraterrestrial and radiation incident on inclined planes; the optics of a cloudless-sky atmosphere; solar spectral radiation and total (broadband) radiation under cloudless skies; and solar radiation arriving at horizontal surfaces on the earth through cloudy skies. The ground albedo and its spectral and angular variation are also described, along with insolation on inclined surfaces. The last chapter is devoted to instruments for measuring solar radiation, including pyrheliometers and pyranometers. This monograph will serve as a useful guide for energy analysts, designers of thermal devices, architects and engineers, agronomists, and hydrologists as well as senior graduate students.

UV Radiation in Global Climate Change

UV Radiation in Global Climate Change
Author: Wei Gao
Publisher: Springer Science & Business Media
Total Pages: 565
Release: 2010-09-08
Genre: Science
ISBN: 364203313X

Numerous studies report that ultraviolet (UV) radiation is harmful to living organisms and detrimental to human health. Growing concerns regarding the increased levels of UV-B radiation that reach the earth's surface have led to the development of ground- and space-based measurement programs. Further study is needed on the measurement, modeling, and effects of UV radiation. The chapters of this book describe the research conducted across the globe over the past three decades in the areas of: (1) current and predicted levels of UV radiation and its associated impact on ecosystems and human health, as well as economic and social implications; (2) new developments in UV instrumentation, advances in calibration (ground- and satellite-based), measurement methods, modeling efforts, and their applications; and (3) the effects of global climate change on UV radiation. Dr. Wei Gao is a Senior Research Scientist and the Director of the USDA UV-B Monitoring and Research Program, Natural Resource Ecology Laboratory, Colorado State University. Dr. Gao is a SPIE fellow and serves as the Editor-in-Chief for the Journal of Applied Remote Sensing. Dr. Daniel L. Schmoldt is the National Program Leader for instrumentation and sensors at the National Institute of Food and Agriculture (NIFA) of the U.S. Department of Agriculture. Dr. Schmoldt served as joint Editor-in-Chief of the journal, Computers & Electronics in Agriculture, from 1997 to 2004. Dr. James R. Slusser retired in 2007 from the USDA UV-B Monitoring and Research Program at Colorado State University. He was active in the Society of Photo-Optical Instrumentation Engineers, the American Geophysical Union, and the American Meteorological Society. Dr. Slusser is currently pursuing his interests in solar energy and atmospheric transmission.

Fundamentals of Solar Radiation

Fundamentals of Solar Radiation
Author: Lucien Wald
Publisher: CRC Press
Total Pages: 330
Release: 2021-05-12
Genre: Technology & Engineering
ISBN: 1000380238

The sun radiates a tremendous amount of energy, called solar energy or solar radiation, which is the main natural source of energy on the Earth, by far. Because solar radiation is the almost unique supplier of energy to the Earth, it has a primary influence on life and activities on the Earth. The climate is a first example, but there are many others, such as plant growth or human health, or even the design of buildings, the production of energy, notably electrical and thermal, or even aging materials. This book aims to provide simple answers to anyone who has questions about solar radiation. Its ambition is to help by presenting the fundamental elements of the solar radiation received on the ground. The book includes many examples and numerous illustrations, as well as some simple but fairly precise equations to calculate the various elements covered and to reproduce the figures and graphs. The first of the three parts of this book is devoted to the relative geometry between the direction of the sun and an observer on the ground as well as to the solar radiation emitted by the sun and received at the top of the atmosphere. The orbit of the Earth around the sun and the solar declination are described. The concept of time is introduced which is closely linked to the solar cycle and the rotation of the Earth on itself. Equations are given to calculate the solar radiation received on a horizontal or inclined surface located at the top of the atmosphere. The spectral distribution of the extraterrestrial solar radiation is described. The second part of this book addresses how the solar radiation incident at the top of the atmosphere is attenuated and modified in its downward path to the ground. The reflection of the radiation by the ground is presented. The solar radiation received on the ground by a horizontal or inclined collector plane, such as a natural slope or a rooftop, is discussed, as well as its spectral distribution. The variability of the radiation is addressed in relation to the properties of solar radiation estimated from the measurements. The third part deals with direct or indirect measurements of the solar radiation received on the ground over a given integration time (minute, hour, day, or month), whether for total radiation or radiation in a spectral range such as ultraviolet (UV), or daylight, or photosynthetically active radiation (PAR). It also explains how to check the plausibility of the measurements. Fundamentals of Solar Radiation will be a valuable resource to all professionals, engineers, researchers, students, and other practitioners that seek an understanding of solar radiation.

Electromagnetic Radiation in Space

Electromagnetic Radiation in Space
Author: J.G. Emming
Publisher: Springer Science & Business Media
Total Pages: 310
Release: 2012-12-06
Genre: Science
ISBN: 9401035261

The subject of this volume in the Astrophysics and Space Science Library is Electro magnetic Radiation in Space. It is essentially based on the lectures given at the third ESRO Summer School which was held from 19 July to 13 August, 1965, in Alpbach, Austria. Fifty-eight selected students attended the courses representing the following countries: Austria (2), Belgium (1), Denmark (1), France (12), Germany (10), Italy (7), Netherlands (2), Spain (4), Sweden (6), Switzerland (3), United Kingdom (9), United States (1). Thirteen lectures courses and nine seminars were given by sixteen different scientists in total. In this book the courses and seminars have been classified in three parts according to the kind of radiation which they mainly deal with: Ultraviolet Radiation, X Radiation and Cosmic Radiation. These parts can be broken down further in theo retical and observational aspects, whereas in the first and second part solar as well as stellar ultraviolet- and X-radiation can be distinguished. * Due to various reasons the publication of this volume had to be delayed; it was therefore judged appropriate to bring the text up to date. The various lecturers have been asked to revise the manuscripts and to eventually add new information which has been acquired in this rapidly evolving field of space astrophysics. Most authors have responded positively to this request, some even have completely rewritten the manuscript.

The radiation regime and architecture of plant stands

The radiation regime and architecture of plant stands
Author: J. Ross
Publisher: Springer Science & Business Media
Total Pages: 411
Release: 2012-12-06
Genre: Science
ISBN: 9400986475

The solar radiant energy is in fact the only source of energy for the basic physical processes taking place in the atmosphere and on the earth's surface. When passing through the atmosphere and being reflected by the ground surface, solar radiation undergoes changes and conversions. Some of it is absorbed in the atmosphere and converted into other forms of energy, mainly into heat, and some is scattered by gases, by dust and by water vapour. Because of absorption and scattering in the atmosphere, solar radiation is changed by the time it reaches the earth's surface. That part of it which arrives as a beam of parallel rays is referred to as direct solar radiation, and that which is scattered in the atmosphere and reaches the earth's surface from all directions of the sky is called diffuse solar radiation. Both of them are reflected back into the atmosphere when they reach the earth's surface, and this third type of radiation is defined as reflected radiation. All of these radiations differ from solar radiation arriving at the upper level of the atmosphere in intensity as well as in spectral composition although they all fall within the spectral region of solar radiation. In atmospheric physics these types of radiation are known as short-wave radiation (SWR) as distinguished from long-wave or irifrared radiation (L WR) emitted by the atmosphere and the earth's surface.