E T Jaynes Papers On Probability Statistics And Statistical Physics
Download E T Jaynes Papers On Probability Statistics And Statistical Physics full books in PDF, epub, and Kindle. Read online free E T Jaynes Papers On Probability Statistics And Statistical Physics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Edwin T. Jaynes |
Publisher | : Springer Science & Business Media |
Total Pages | : 468 |
Release | : 1989-04-30 |
Genre | : Mathematics |
ISBN | : 9780792302131 |
The first six chapters of this volume present the author's 'predictive' or information theoretic' approach to statistical mechanics, in which the basic probability distributions over microstates are obtained as distributions of maximum entropy (Le. , as distributions that are most non-committal with regard to missing information among all those satisfying the macroscopically given constraints). There is then no need to make additional assumptions of ergodicity or metric transitivity; the theory proceeds entirely by inference from macroscopic measurements and the underlying dynamical assumptions. Moreover, the method of maximizing the entropy is completely general and applies, in particular, to irreversible processes as well as to reversible ones. The next three chapters provide a broader framework - at once Bayesian and objective - for maximum entropy inference. The basic principles of inference, including the usual axioms of probability, are seen to rest on nothing more than requirements of consistency, above all, the requirement that in two problems where we have the same information we must assign the same probabilities. Thus, statistical mechanics is viewed as a branch of a general theory of inference, and the latter as an extension of the ordinary logic of consistency. Those who are familiar with the literature of statistics and statistical mechanics will recognize in both of these steps a genuine 'scientific revolution' - a complete reversal of earlier conceptions - and one of no small significance.
Author | : Edwin T. Jaynes |
Publisher | : Springer |
Total Pages | : 480 |
Release | : 1983-01-31 |
Genre | : Mathematics |
ISBN | : |
The first six chapters of this volume present the author's 'predictive' or information theoretic' approach to statistical mechanics, in which the basic probability distributions over microstates are obtained as distributions of maximum entropy (Le. , as distributions that are most non-committal with regard to missing information among all those satisfying the macroscopically given constraints). There is then no need to make additional assumptions of ergodicity or metric transitivity; the theory proceeds entirely by inference from macroscopic measurements and the underlying dynamical assumptions. Moreover, the method of maximizing the entropy is completely general and applies, in particular, to irreversible processes as well as to reversible ones. The next three chapters provide a broader framework - at once Bayesian and objective - for maximum entropy inference. The basic principles of inference, including the usual axioms of probability, are seen to rest on nothing more than requirements of consistency, above all, the requirement that in two problems where we have the same information we must assign the same probabilities. Thus, statistical mechanics is viewed as a branch of a general theory of inference, and the latter as an extension of the ordinary logic of consistency. Those who are familiar with the literature of statistics and statistical mechanics will recognize in both of these steps a genuine 'scientific revolution' - a complete reversal of earlier conceptions - and one of no small significance.
Author | : R.D. Rosenkrantz |
Publisher | : Springer Science & Business Media |
Total Pages | : 457 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 9400965818 |
The first six chapters of this volume present the author's 'predictive' or information theoretic' approach to statistical mechanics, in which the basic probability distributions over microstates are obtained as distributions of maximum entropy (Le. , as distributions that are most non-committal with regard to missing information among all those satisfying the macroscopically given constraints). There is then no need to make additional assumptions of ergodicity or metric transitivity; the theory proceeds entirely by inference from macroscopic measurements and the underlying dynamical assumptions. Moreover, the method of maximizing the entropy is completely general and applies, in particular, to irreversible processes as well as to reversible ones. The next three chapters provide a broader framework - at once Bayesian and objective - for maximum entropy inference. The basic principles of inference, including the usual axioms of probability, are seen to rest on nothing more than requirements of consistency, above all, the requirement that in two problems where we have the same information we must assign the same probabilities. Thus, statistical mechanics is viewed as a branch of a general theory of inference, and the latter as an extension of the ordinary logic of consistency. Those who are familiar with the literature of statistics and statistical mechanics will recognize in both of these steps a genuine 'scientific revolution' - a complete reversal of earlier conceptions - and one of no small significance.
Author | : R. D. Rosenkrantz |
Publisher | : |
Total Pages | : 464 |
Release | : 1983-01-31 |
Genre | : |
ISBN | : 9789400965829 |
Author | : |
Publisher | : Allied Publishers |
Total Pages | : 436 |
Release | : 2013 |
Genre | : |
ISBN | : 9788177644517 |
Author | : G. Erickson |
Publisher | : Springer Science & Business Media |
Total Pages | : 338 |
Release | : 1988-08-31 |
Genre | : Mathematics |
ISBN | : 9789027727930 |
This volume has its origin in the Fifth, Sixth and Seventh Workshops on and Bayesian Methods in Applied Statistics", held at "Maximum-Entropy the University of Wyoming, August 5-8, 1985, and at Seattle University, August 5-8, 1986, and August 4-7, 1987. It was anticipated that the proceedings of these workshops would be combined, so most of the papers were not collected until after the seventh workshop. Because all of the papers in this volume are on foundations, it is believed that the con tents of this volume will be of lasting interest to the Bayesian community. The workshop was organized to bring together researchers from different fields to critically examine maximum-entropy and Bayesian methods in science and engineering as well as other disciplines. Some of the papers were chosen specifically to kindle interest in new areas that may offer new tools or insight to the reader or to stimulate work on pressing problems that appear to be ideally suited to the maximum-entropy or Bayesian method. A few papers presented at the workshops are not included in these proceedings, but a number of additional papers not presented at the workshop are included. In particular, we are delighted to make available Professor E. T. Jaynes' unpublished Stanford University Microwave Laboratory Report No. 421 "How Does the Brain Do Plausible Reasoning?" (dated August 1957). This is a beautiful, detailed tutorial on the Cox-Polya-Jaynes approach to Bayesian probability theory and the maximum-entropy principle.
Author | : John Skilling |
Publisher | : Springer Science & Business Media |
Total Pages | : 521 |
Release | : 2013-06-29 |
Genre | : Mathematics |
ISBN | : 9401578605 |
Author | : Marc Mézard |
Publisher | : Oxford University Press |
Total Pages | : 584 |
Release | : 2009-01-22 |
Genre | : Computers |
ISBN | : 019857083X |
A very active field of research is emerging at the frontier of statistical physics, theoretical computer science/discrete mathematics, and coding/information theory. This book sets up a common language and pool of concepts, accessible to students and researchers from each of these fields.
Author | : O. Penrose |
Publisher | : Elsevier |
Total Pages | : 272 |
Release | : 2016-09-21 |
Genre | : Science |
ISBN | : 1483156486 |
International Series of Monographs in Natural Philosophy, Volume 22: Foundations of Statistical Mechanics: A Deductive Treatment presents the main approaches to the basic problems of statistical mechanics. This book examines the theory that provides explicit recognition to the limitations on one's powers of observation. Organized into six chapters, this volume begins with an overview of the main physical assumptions and their idealization in the form of postulates. This text then examines the consequences of these postulates that culminate in a derivation of the fundamental formula for calculating probabilities in terms of dynamic quantities. Other chapters provide a careful analysis of the significant notion of entropy, which shows the links between thermodynamics and statistical mechanics and also between communication theory and statistical mechanics. The final chapter deals with the thermodynamic concept of entropy. This book is intended to be suitable for students of theoretical physics. Probability theorists, statisticians, and philosophers will also find this book useful.
Author | : David F. Anderson |
Publisher | : Cambridge University Press |
Total Pages | : 447 |
Release | : 2017-11-02 |
Genre | : Mathematics |
ISBN | : 110824498X |
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.