Dynamics Of Very High Dimensional Systems

Dynamics Of Very High Dimensional Systems
Author: Earl H Dowell
Publisher: World Scientific Publishing Company
Total Pages: 285
Release: 2003-08-22
Genre: Technology & Engineering
ISBN: 9813102276

Many books on dynamics start with a discussion of systems with one or two degrees of freedom and then turn to the generalization to the case of many degrees of freedom. For linear systems, the concept of eigenfunctions provides a compact and elegant method for decomposing the dynamics of a high dimensional system into a series of independent single-degree-of-freedom dynamical systems. Yet, when the system has a very high dimension, the determination of the eigenfunctions may be a distinct challenge, and when the dynamical system is nonconservative and/or nonlinear, the whole notion of uncoupled eigenmodes requires nontrivial extensions of classical methods. These issues constitute the subject of this book.

Dynamics of Very High Dimensional Systems

Dynamics of Very High Dimensional Systems
Author: E. H. Dowell
Publisher: World Scientific
Total Pages: 288
Release: 2003
Genre: Technology & Engineering
ISBN: 9789812384676

Many books on dynamics start with a discussion of systems with one or two degrees of freedom and then turn to the generalization to the case of many degrees of freedom. For linear systems, the concept of eigenfunctions provides a compact and elegant method for decomposing the dynamics of a high dimensional system into a series of independent single-degree-of-freedom dynamical systems. Yet, when the system has a very high dimension, the determination of the eigenfunctions may be a distinct challenge, and when the dynamical system is nonconservative and/or nonlinear, the whole notion of uncoupled eigenmodes requires nontrivial extensions of classical methods. These issues constitute the subject of this book.

High-Dimensional Chaotic and Attractor Systems

High-Dimensional Chaotic and Attractor Systems
Author: Vladimir G. Ivancevic
Publisher: Intelligent Systems, Control and Automation: Science and Engineering
Total Pages: 728
Release: 2007-02-02
Genre: Language Arts & Disciplines
ISBN:

This graduate–level textbook is devoted to understanding, prediction and control of high–dimensional chaotic and attractor systems of real life. The objective is to provide the serious reader with a serious scientific tool that will enable the actual performance of competitive research in high–dimensional chaotic and attractor dynamics. From introductory material on low-dimensional attractors and chaos, the text explores concepts including Poincaré’s 3-body problem, high-tech Josephson junctions, and more.

Data-Driven Science and Engineering

Data-Driven Science and Engineering
Author: Steven L. Brunton
Publisher: Cambridge University Press
Total Pages: 615
Release: 2022-05-05
Genre: Computers
ISBN: 1009098489

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-Type Methods

Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-Type Methods
Author: Jan Awrejcewicz
Publisher: World Scientific
Total Pages: 318
Release: 2007
Genre: Mathematics
ISBN: 981270910X

This book focuses on the development of Melnikov-type methods applied to high dimensional dynamical systems governed by ordinary differential equations. Although the classical Melnikov's technique has found various applications in predicting homoclinic intersections, it is devoted only to the analysis of three-dimensional systems (in the case of mechanics, they represent one-degree-of-freedom nonautonomous systems). This book extends the classical Melnikov's approach to the study of high dimensional dynamical systems, and uses simple models of dry friction to analytically predict the occurrence of both stick-slip and slip-slip chaotic orbits, research which is very rarely reported in the existing literature even on one-degree-of-freedom nonautonomous dynamics. This pioneering attempt to predict the occurrence of deterministic chaos of nonlinear dynamical systems will attract many researchers including applied mathematicians, physicists, as well as practicing engineers. Analytical formulas are explicitly formulated step-by-step, even attracting potential readers without a rigorous mathematical background. Sample Chapter(s). Chapter 1: A Role of the Melnikov-Type Methods in Applied Sciences (137 KB). Contents: A Role of the Melnikov-Type Methods in Applied Sciences; Classical Melnikov Approach; Homoclinic Chaos Criterion in a Rotated Froude Pendulum with Dry Friction; Smooth and Nonsmooth Dynamics of a Quasi-Autonomous Oscillator with Coulomb and Viscous Frictions; Application of the MelnikovOCoGruendler Method to Mechanical Systems; A Self-Excited Spherical Pendulum; A Double Self-excited Duffing-type Oscillator; A Triple Self-Excited Duffing-type Oscillator. Readership: Graduate students and researchers in dynamical systems.

Statistical Machine Learning

Statistical Machine Learning
Author: Richard Golden
Publisher: CRC Press
Total Pages: 525
Release: 2020-06-24
Genre: Computers
ISBN: 1351051490

The recent rapid growth in the variety and complexity of new machine learning architectures requires the development of improved methods for designing, analyzing, evaluating, and communicating machine learning technologies. Statistical Machine Learning: A Unified Framework provides students, engineers, and scientists with tools from mathematical statistics and nonlinear optimization theory to become experts in the field of machine learning. In particular, the material in this text directly supports the mathematical analysis and design of old, new, and not-yet-invented nonlinear high-dimensional machine learning algorithms. Features: Unified empirical risk minimization framework supports rigorous mathematical analyses of widely used supervised, unsupervised, and reinforcement machine learning algorithms Matrix calculus methods for supporting machine learning analysis and design applications Explicit conditions for ensuring convergence of adaptive, batch, minibatch, MCEM, and MCMC learning algorithms that minimize both unimodal and multimodal objective functions Explicit conditions for characterizing asymptotic properties of M-estimators and model selection criteria such as AIC and BIC in the presence of possible model misspecification This advanced text is suitable for graduate students or highly motivated undergraduate students in statistics, computer science, electrical engineering, and applied mathematics. The text is self-contained and only assumes knowledge of lower-division linear algebra and upper-division probability theory. Students, professional engineers, and multidisciplinary scientists possessing these minimal prerequisites will find this text challenging yet accessible. About the Author: Richard M. Golden (Ph.D., M.S.E.E., B.S.E.E.) is Professor of Cognitive Science and Participating Faculty Member in Electrical Engineering at the University of Texas at Dallas. Dr. Golden has published articles and given talks at scientific conferences on a wide range of topics in the fields of both statistics and machine learning over the past three decades. His long-term research interests include identifying conditions for the convergence of deterministic and stochastic machine learning algorithms and investigating estimation and inference in the presence of possibly misspecified probability models.

One-Dimensional Dynamics

One-Dimensional Dynamics
Author: Welington de Melo
Publisher: Springer Science & Business Media
Total Pages: 616
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642780431

One-dimensional dynamics has developed in the last decades into a subject in its own right. Yet, many recent results are inaccessible and have never been brought together. For this reason, we have tried to give a unified ac count of the subject and complete proofs of many results. To show what results one might expect, the first chapter deals with the theory of circle diffeomorphisms. The remainder of the book is an attempt to develop the analogous theory in the non-invertible case, despite the intrinsic additional difficulties. In this way, we have tried to show that there is a unified theory in one-dimensional dynamics. By reading one or more of the chapters, the reader can quickly reach the frontier of research. Let us quickly summarize the book. The first chapter deals with circle diffeomorphisms and contains a complete proof of the theorem on the smooth linearizability of circle diffeomorphisms due to M. Herman, J.-C. Yoccoz and others. Chapter II treats the kneading theory of Milnor and Thurstonj also included are an exposition on Hofbauer's tower construction and a result on fuB multimodal families (this last result solves a question posed by J. Milnor).

High-Dimensional Probability

High-Dimensional Probability
Author: Roman Vershynin
Publisher: Cambridge University Press
Total Pages: 299
Release: 2018-09-27
Genre: Business & Economics
ISBN: 1108415199

An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Nonlinear Dynamics and Statistics

Nonlinear Dynamics and Statistics
Author: Alistair I. Mees
Publisher: Springer Science & Business Media
Total Pages: 490
Release: 2001-01-25
Genre: Business & Economics
ISBN: 9780817641634

This book describes the state of the art in nonlinear dynamical reconstruction theory. The chapters are based upon a workshop held at the Isaac Newton Institute, Cambridge University, UK, in late 1998. The book's chapters present theory and methods topics by leading researchers in applied and theoretical nonlinear dynamics, statistics, probability, and systems theory. Features and topics: * disentangling uncertainty and error: the predictability of nonlinear systems * achieving good nonlinear models * delay reconstructions: dynamics vs. statistics * introduction to Monte Carlo Methods for Bayesian Data Analysis * latest results in extracting dynamical behavior via Markov Models * data compression, dynamics and stationarity Professionals, researchers, and advanced graduates in nonlinear dynamics, probability, optimization, and systems theory will find the book a useful resource and guide to current developments in the subject.

Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos
Author: J Hogan
Publisher: CRC Press
Total Pages: 370
Release: 2002-08-01
Genre: Mathematics
ISBN: 1420033832

Nonlinear dynamics has been successful in explaining complicated phenomena in well-defined low-dimensional systems. Now it is time to focus on real-life problems that are high-dimensional or ill-defined, for example, due to delay, spatial extent, stochasticity, or the limited nature of available data. How can one understand the dynamics of such sys