Dynamics Of Non Spherical Particles In Turbulence
Download Dynamics Of Non Spherical Particles In Turbulence full books in PDF, epub, and Kindle. Read online free Dynamics Of Non Spherical Particles In Turbulence ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Luis Blay Esteban |
Publisher | : Springer |
Total Pages | : 180 |
Release | : 2019-08-13 |
Genre | : Technology & Engineering |
ISBN | : 3030281361 |
This book studies the dynamics of 2D objects moving through turbulent fluids. It examines the decay of turbulence over extended time scales, and compares the dynamics of non-spherical particles moving through still and turbulent fluids. The book begins with an introduction to the project, its aims, and its relevance for industrial applications. It then discusses the movement of planar particles in quiescent fluid, and presents the numerous methodologies used to measure it. The book also presents a detailed analysis of the falling style of irregular particles, which makes it possible to estimate particle trajectory and wake morphology based on frontal geometry. In turn, the book provides the results of an analysis of physically constrained decaying turbulence in a laboratory setting. These results suggest that large-scale cut-off in numerical simulations can result in severe bias in the computed turbulent kinetic energy for long waiting times. Combining the main text with a wealth of figures and sketches throughout, the book offers an accessible guide for all engineering students with a basic grasp of fluid mechanics, while the key findings will also be of interest to senior researchers.
Author | : Luis Blay Esteban |
Publisher | : |
Total Pages | : 180 |
Release | : 2020 |
Genre | : Electronic books |
ISBN | : 9783030281373 |
This book studies the dynamics of 2D objects moving through turbulent fluids. It examines the decay of turbulence over extended time scales, and compares the dynamics of non-spherical particles moving through still and turbulent fluids. The book begins with an introduction to the project, its aims, and its relevance for industrial applications. It then discusses the movement of planar particles in quiescent fluid, and presents the numerous methodologies used to measure it. The book also presents a detailed analysis of the falling style of irregular particles, which makes it possible to estimate particle trajectory and wake morphology based on frontal geometry. In turn, the book provides the results of an analysis of physically constrained decaying turbulence in a laboratory setting. These results suggest that large-scale cut-off in numerical simulations can result in severe bias in the computed turbulent kinetic energy for long waiting times. Combining the main text with a wealth of figures and sketches throughout, the book offers an accessible guide for all engineering students with a basic grasp of fluid mechanics, while the key findings will also be of interest to senior researchers.
Author | : Leonid I. Zaichik |
Publisher | : John Wiley & Sons |
Total Pages | : 318 |
Release | : 2008-12-04 |
Genre | : Science |
ISBN | : 3527626263 |
The only work available to treat the theory of turbulent flow with suspended particles, this book also includes a section on simulation methods, comparing the model results obtained with the PDF method to those obtained with other techniques, such as DNS, LES and RANS. Written by experienced scientists with background in oil and gas processing, this book is applicable to a wide range of industries -- from the petrol industry and industrial chemistry to food and water processing.
Author | : Albert S. Kim |
Publisher | : BoD – Books on Demand |
Total Pages | : 174 |
Release | : 2019-12-11 |
Genre | : Science |
ISBN | : 1789843723 |
As researchers deal with processes and phenomena that are geometrically complex and phenomenologically coupled the demand for high-performance computational fluid dynamics (CFD) increases continuously. The intrinsic nature of coupled irreversibility requires computational tools that can provide physically meaningful results within a reasonable time. This book collects the state-of-the-art CFD research activities and future R
Author | : Tchen Chan-Mou |
Publisher | : Springer |
Total Pages | : 138 |
Release | : 2013-11-21 |
Genre | : Technology & Engineering |
ISBN | : 9401761019 |
Author | : Manuel García-Villalba |
Publisher | : Springer Nature |
Total Pages | : 478 |
Release | : 2020-05-09 |
Genre | : Technology & Engineering |
ISBN | : 3030428222 |
This book gathers the proceedings of the 12th instalment in the bi-annual Workshop series on Direct and Large Eddy Simulation (DLES), which began in 1994 and focuses on modern techniques used to simulate turbulent flows based on the partial or full resolution of the instantaneous turbulent flow structure. With the rapidly expanding capacities of modern computers, this approach has attracted more and more interest over the years and will undoubtedly be further enhanced and applied in the future. Hybrid modelling techniques based on a combination of LES and RANS approaches also fall into this category and are covered as well. The goal of the Workshop was to share the state of the art in DNS, LES and related techniques for the computation and modelling of turbulent and transitional flows. The respective papers highlight the latest advances in the prediction, understanding and control of turbulent flows in academic and industrial applications.
Author | : Shankar Subramaniam |
Publisher | : Academic Press |
Total Pages | : 588 |
Release | : 2022-10-20 |
Genre | : Technology & Engineering |
ISBN | : 0323901344 |
Modelling Approaches and Computational Methods for Particle-laden Turbulent Flows introduces the principal phenomena observed in applications where turbulence in particle-laden flow is encountered while also analyzing the main methods for analyzing numerically. The book takes a practical approach, providing advice on how to select and apply the correct model or tool by drawing on the latest research. Sections provide scales of particle-laden turbulence and the principal analytical frameworks and computational approaches used to simulate particles in turbulent flow. Each chapter opens with a section on fundamental concepts and theory before describing the applications of the modelling approach or numerical method. Featuring explanations of key concepts, definitions, and fundamental physics and equations, as well as recent research advances and detailed simulation methods, this book is the ideal starting point for students new to this subject, as well as an essential reference for experienced researchers. - Provides a comprehensive introduction to the phenomena of particle laden turbulent flow - Explains a wide range of numerical methods, including Eulerian-Eulerian, Eulerian-Lagrange, and volume-filtered computation - Describes a wide range of innovative applications of these models
Author | : Clayton T. Crowe |
Publisher | : CRC Press |
Total Pages | : 509 |
Release | : 2011-08-26 |
Genre | : Science |
ISBN | : 1439840512 |
Since the publication of the first edition of Multiphase Flow with Droplets and Particles, there have been significant advances in science and engineering applications of multiphase fluid flow. Maintaining the pedagogical approach that made the first edition so popular, this second edition provides a background in this important area of fluid mecha
Author | : Cristian Marchioli |
Publisher | : Springer Nature |
Total Pages | : 389 |
Release | : 2023-11-15 |
Genre | : Technology & Engineering |
ISBN | : 3031470281 |
This book covers the diverse and cutting-edge research presented at the 13th ERCOFTAC Workshop on Direct and Large Eddy Simulation. The first section of the book focuses on Aerodynamics/Aeroacoustics, comprising eight papers that delve into the intricate relationship between fluid flow and aerodynamic performance. The second section explores the dynamics of Bluff/Moving Bodies through four insightful papers. Bubbly Flows, the subject of the third section, is examined through four papers. Moving on, the fourth section is dedicated to Combustion and Reactive Flows, presenting two papers that focus on the complex dynamics of combustion processes and the interactions between fluids and reactive species. Convection and Heat/Mass Transfer are the central themes of the fifth section, which includes three papers. These contributions explore the fundamental aspects of heat and mass transfer in fluid flows, addressing topics such as convective heat transfer, natural convection, and mass transport phenomena. The sixth section covers Data Assimilation and Uncertainty Quantification, featuring two papers that highlight the importance of incorporating data into fluid dynamic models and quantifying uncertainties associated with these models. The subsequent sections encompass a wide range of topics, including Environmental and Industrial Applications, Flow Separation, LES Fundamentals and Modelling, Multiphase Flows, and Numerics and Methodology. These sections collectively present a total of 23 papers that explore different facets of fluid dynamics, contributing to the advancement of the field and its practical applications.
Author | : Efstathios Michaelides |
Publisher | : CRC Press |
Total Pages | : 1559 |
Release | : 2016-10-26 |
Genre | : Science |
ISBN | : 1315354624 |
The Multiphase Flow Handbook, Second Edition is a thoroughly updated and reorganized revision of the late Clayton Crowe’s work, and provides a detailed look at the basic concepts and the wide range of applications in this important area of thermal/fluids engineering. Revised by the new editors, Efstathios E. (Stathis) Michaelides and John D. Schwarzkopf, the new Second Edition begins with two chapters covering fundamental concepts and methods that pertain to all the types and applications of multiphase flow. The remaining chapters cover the applications and engineering systems that are relevant to all the types of multiphase flow and heat transfer. The twenty-one chapters and several sections of the book include the basic science as well as the contemporary engineering and technological applications of multiphase flow in a comprehensive way that is easy to follow and be understood. The editors created a common set of nomenclature that is used throughout the book, allowing readers to easily compare fundamental theory with currently developing concepts and applications. With contributed chapters from sixty-two leading experts around the world, the Multiphase Flow Handbook, Second Edition is an essential reference for all researchers, academics and engineers working with complex thermal and fluid systems.