Dynamics and Analytic Number Theory

Dynamics and Analytic Number Theory
Author: Dzmitry Badziahin
Publisher: Cambridge University Press
Total Pages: 341
Release: 2016-11-10
Genre: Mathematics
ISBN: 1107552370

Presents current research in various topics, including homogeneous dynamics, Diophantine approximation and combinatorics.

Number Theory and Dynamical Systems

Number Theory and Dynamical Systems
Author: M. M. Dodson
Publisher: Cambridge University Press
Total Pages: 185
Release: 1989-11-09
Genre: Mathematics
ISBN: 0521369193

This volume contains selected contributions from a very successful meeting on Number Theory and Dynamical Systems held at the University of York in 1987. There are close and surprising connections between number theory and dynamical systems. One emerged last century from the study of the stability of the solar system where problems of small divisors associated with the near resonance of planetary frequencies arose. Previously the question of the stability of the solar system was answered in more general terms by the celebrated KAM theorem, in which the relationship between near resonance (and so Diophantine approximation) and stability is of central importance. Other examples of the connections involve the work of Szemeredi and Furstenberg, and Sprindzuk. As well as containing results on the relationship between number theory and dynamical systems, the book also includes some more speculative and exploratory work which should stimulate interest in different approaches to old problems.

Ergodic Theory

Ergodic Theory
Author: Manfred Einsiedler
Publisher: Springer Science & Business Media
Total Pages: 486
Release: 2010-09-11
Genre: Mathematics
ISBN: 0857290215

This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.

Holomorphic Dynamics

Holomorphic Dynamics
Author: S. Morosawa
Publisher: Cambridge University Press
Total Pages: 354
Release: 2000-01-13
Genre: Mathematics
ISBN: 9780521662581

This book, first published in 2000, is a comprehensive introduction to holomorphic dynamics, that is the dynamics induced by the iteration of various analytic maps in complex number spaces. This has been the focus of much attention in recent years, with, for example, the discovery of the Mandelbrot set, and work on chaotic behaviour of quadratic maps. The treatment is mathematically unified, emphasizing the substantial role played by classical complex analysis in understanding holomorphic dynamics as well as giving an up-to-date coverage of the modern theory. The authors cover entire functions, Kleinian groups and polynomial automorphisms of several complex variables such as complex Henon maps, as well as the case of rational functions. The book will be welcomed by graduate students and professionals in pure mathematics and science who seek a reasonably self-contained introduction to this exciting area.

Analytical Dynamics

Analytical Dynamics
Author: Mark D. Ardema
Publisher: Springer Science & Business Media
Total Pages: 345
Release: 2006-10-31
Genre: Technology & Engineering
ISBN: 0306486822

This book takes a traditional approach to the development of the methods of analytical dynamics, using two types of examples throughout: simple illustrations of key results and thorough applications to complex, real-life problems.

An Illustrated Theory of Numbers

An Illustrated Theory of Numbers
Author: Martin H. Weissman
Publisher: American Mathematical Soc.
Total Pages: 341
Release: 2020-09-15
Genre: Education
ISBN: 1470463717

News about this title: — Author Marty Weissman has been awarded a Guggenheim Fellowship for 2020. (Learn more here.) — Selected as a 2018 CHOICE Outstanding Academic Title — 2018 PROSE Awards Honorable Mention An Illustrated Theory of Numbers gives a comprehensive introduction to number theory, with complete proofs, worked examples, and exercises. Its exposition reflects the most recent scholarship in mathematics and its history. Almost 500 sharp illustrations accompany elegant proofs, from prime decomposition through quadratic reciprocity. Geometric and dynamical arguments provide new insights, and allow for a rigorous approach with less algebraic manipulation. The final chapters contain an extended treatment of binary quadratic forms, using Conway's topograph to solve quadratic Diophantine equations (e.g., Pell's equation) and to study reduction and the finiteness of class numbers. Data visualizations introduce the reader to open questions and cutting-edge results in analytic number theory such as the Riemann hypothesis, boundedness of prime gaps, and the class number 1 problem. Accompanying each chapter, historical notes curate primary sources and secondary scholarship to trace the development of number theory within and outside the Western tradition. Requiring only high school algebra and geometry, this text is recommended for a first course in elementary number theory. It is also suitable for mathematicians seeking a fresh perspective on an ancient subject.

Potential Theory and Dynamics on the Berkovich Projective Line

Potential Theory and Dynamics on the Berkovich Projective Line
Author: Matthew Baker
Publisher: American Mathematical Soc.
Total Pages: 466
Release: 2010-03-10
Genre: Mathematics
ISBN: 0821849247

The purpose of this book is to develop the foundations of potential theory and rational dynamics on the Berkovich projective line over an arbitrary complete, algebraically closed non-Archimedean field. In addition to providing a concrete and ``elementary'' introduction to Berkovich analytic spaces and to potential theory and rational iteration on the Berkovich line, the book contains applications to arithmetic geometry and arithmetic dynamics. A number of results in the book are new, and most have not previously appeared in book form. Three appendices--on analysis, $\mathbb{R}$-trees, and Berkovich's general theory of analytic spaces--are included to make the book as self-contained as possible. The authors first give a detailed description of the topological structure of the Berkovich projective line and then introduce the Hsia kernel, the fundamental kernel for potential theory. Using the theory of metrized graphs, they define a Laplacian operator on the Berkovich line and construct theories of capacities, harmonic and subharmonic functions, and Green's functions, all of which are strikingly similar to their classical complex counterparts. After developing a theory of multiplicities for rational functions, they give applications to non-Archimedean dynamics, including local and global equidistribution theorems, fixed point theorems, and Berkovich space analogues of many fundamental results from the classical Fatou-Julia theory of rational iteration. They illustrate the theory with concrete examples and exposit Rivera-Letelier's results concerning rational dynamics over the field of $p$-adic complex numbers. They also establish Berkovich space versions of arithmetic results such as the Fekete-Szego theorem and Bilu's equidistribution theorem.

Dynamics and Analytic Number Theory

Dynamics and Analytic Number Theory
Author: Dzmitry Badziahin
Publisher:
Total Pages: 321
Release: 2016
Genre: Analytic functions
ISBN: 9781316402696

Presents current research in various topics, including homogeneous dynamics, Diophantine approximation and combinatorics.

Introduction to Modern Number Theory

Introduction to Modern Number Theory
Author: Yu. I. Manin
Publisher: Springer Science & Business Media
Total Pages: 519
Release: 2006-03-30
Genre: Mathematics
ISBN: 3540276920

This edition has been called ‘startlingly up-to-date’, and in this corrected second printing you can be sure that it’s even more contemporaneous. It surveys from a unified point of view both the modern state and the trends of continuing development in various branches of number theory. Illuminated by elementary problems, the central ideas of modern theories are laid bare. Some topics covered include non-Abelian generalizations of class field theory, recursive computability and Diophantine equations, zeta- and L-functions. This substantially revised and expanded new edition contains several new sections, such as Wiles' proof of Fermat's Last Theorem, and relevant techniques coming from a synthesis of various theories.

Introduction to Analytic and Probabilistic Number Theory

Introduction to Analytic and Probabilistic Number Theory
Author: G. Tenenbaum
Publisher: Cambridge University Press
Total Pages: 180
Release: 1995-06-30
Genre: Mathematics
ISBN: 9780521412612

This is a self-contained introduction to analytic methods in number theory, assuming on the part of the reader only what is typically learned in a standard undergraduate degree course. It offers to students and those beginning research a systematic and consistent account of the subject but will also be a convenient resource and reference for more experienced mathematicians. These aspects are aided by the inclusion at the end of each chapter a section of bibliographic notes and detailed exercises.