Dynamical Systems And Population Persistence
Download Dynamical Systems And Population Persistence full books in PDF, epub, and Kindle. Read online free Dynamical Systems And Population Persistence ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Hal L. Smith |
Publisher | : American Mathematical Soc. |
Total Pages | : 426 |
Release | : 2011 |
Genre | : Mathematics |
ISBN | : 082184945X |
Providing a self-contained treatment of persistence theory that is accessible to graduate students, this monograph includes chapters on infinite-dimensional examples including an SI epidemic model with variable infectivity, microbial growth in a tubular bioreactor, and an age-structured model of cells growing in a chemostat.
Author | : Xiao-Qiang Zhao |
Publisher | : Springer Science & Business Media |
Total Pages | : 285 |
Release | : 2013-06-05 |
Genre | : Mathematics |
ISBN | : 0387217614 |
Population dynamics is an important subject in mathematical biology. A cen tral problem is to study the long-term behavior of modeling systems. Most of these systems are governed by various evolutionary equations such as difference, ordinary, functional, and partial differential equations (see, e. g. , [165, 142, 218, 119, 55]). As we know, interactive populations often live in a fluctuating environment. For example, physical environmental conditions such as temperature and humidity and the availability of food, water, and other resources usually vary in time with seasonal or daily variations. Therefore, more realistic models should be nonautonomous systems. In particular, if the data in a model are periodic functions of time with commensurate period, a periodic system arises; if these periodic functions have different (minimal) periods, we get an almost periodic system. The existing reference books, from the dynamical systems point of view, mainly focus on autonomous biological systems. The book of Hess [106J is an excellent reference for periodic parabolic boundary value problems with applications to population dynamics. Since the publication of this book there have been extensive investigations on periodic, asymptotically periodic, almost periodic, and even general nonautonomous biological systems, which in turn have motivated further development of the theory of dynamical systems. In order to explain the dynamical systems approach to periodic population problems, let us consider, as an illustration, two species periodic competitive systems dUI dt = !I(t,Ul,U2), (0.
Author | : Steve Baigent |
Publisher | : Springer Nature |
Total Pages | : 440 |
Release | : 2021-01-04 |
Genre | : Mathematics |
ISBN | : 3030601072 |
This book comprises selected papers of the 25th International Conference on Difference Equations and Applications, ICDEA 2019, held at UCL, London, UK, in June 2019. The volume details the latest research on difference equations and discrete dynamical systems, and their application to areas such as biology, economics, and the social sciences. Some chapters have a tutorial style and cover the history and more recent developments for a particular topic, such as chaos, bifurcation theory, monotone dynamics, and global stability. Other chapters cover the latest personal research contributions of the author(s) in their particular area of expertise and range from the more technical articles on abstract systems to those that discuss the application of difference equations to real-world problems. The book is of interest to both Ph.D. students and researchers alike who wish to keep abreast of the latest developments in difference equations and discrete dynamical systems.
Author | : Horst R. Thieme |
Publisher | : American Mathematical Society |
Total Pages | : 357 |
Release | : 2024-05-07 |
Genre | : Mathematics |
ISBN | : 1470474654 |
A fundamental question in the theory of discrete and continuous-time population models concerns the conditions for the extinction or persistence of populations – a question that is addressed mathematically by persistence theory. For some time, it has been recognized that if the dynamics of a structured population are mathematically captured by continuous or discrete semiflows and if these semiflows have first-order approximations, the spectral radii of certain bounded linear positive operators (better known as basic reproduction numbers) act as thresholds between population extinction and persistence. This book combines the theory of discrete-time dynamical systems with applications to population dynamics with an emphasis on spatial structure. The inclusion of two sexes that must mate to produce offspring leads to the study of operators that are (positively) homogeneous (of degree one) and order-preserving rather than linear and positive. While this book offers an introduction to ordered normed vector spaces, some background in real and functional analysis (including some measure theory for a few chapters) will be helpful. The appendix and selected exercises provide a primer about basic concepts and about relevant topics one may not find in every analysis textbook.
Author | : Arnaud Ducrot |
Publisher | : Springer Nature |
Total Pages | : 458 |
Release | : 2022-07-21 |
Genre | : Mathematics |
ISBN | : 3030981363 |
This book provides an introduction to the theory of ordinary differential equations and its applications to population dynamics. Part I focuses on linear systems. Beginning with some modeling background, it considers existence, uniqueness, stability of solution, positivity, and the Perron–Frobenius theorem and its consequences. Part II is devoted to nonlinear systems, with material on the semiflow property, positivity, the existence of invariant sub-regions, the Linearized Stability Principle, the Hartman–Grobman Theorem, and monotone semiflow. Part III opens up new perspectives for the understanding of infectious diseases by applying the theoretical results to COVID-19, combining data and epidemic models. Throughout the book the material is illustrated by numerical examples and their MATLAB codes are provided. Bridging an interdisciplinary gap, the book will be valuable to graduate and advanced undergraduate students studying mathematics and population dynamics.
Author | : King-Yeung Lam |
Publisher | : Springer Nature |
Total Pages | : 316 |
Release | : 2022-12-01 |
Genre | : Mathematics |
ISBN | : 3031204220 |
This book introduces some basic mathematical tools in reaction-diffusion models, with applications to spatial ecology and evolutionary biology. It is divided into four parts. The first part is an introduction to the maximum principle, the theory of principal eigenvalues for elliptic and periodic-parabolic equations and systems, and the theory of principal Floquet bundles. The second part concerns the applications in spatial ecology. We discuss the dynamics of a single species and two competing species, as well as some recent progress on N competing species in bounded domains. Some related results on stream populations and phytoplankton populations are also included. We also discuss the spreading properties of a single species in an unbounded spatial domain, as modeled by the Fisher-KPP equation. The third part concerns the applications in evolutionary biology. We describe the basic notions of adaptive dynamics, such as evolutionarily stable strategies and evolutionary branching points, in the context of a competition model of stream populations. We also discuss a class of selection-mutation models describing a population structured along a continuous phenotypical trait. The fourth part consists of several appendices, which present a self-contained treatment of some basic abstract theories in functional analysis and dynamical systems. Topics include the Krein-Rutman theorem for linear and nonlinear operators, as well as some elements of monotone dynamical systems and abstract competition systems. Most of the book is self-contained and it is aimed at graduate students and researchers who are interested in the theory and applications of reaction-diffusion equations.
Author | : Hisashi Inaba |
Publisher | : Springer |
Total Pages | : 566 |
Release | : 2017-03-15 |
Genre | : Social Science |
ISBN | : 981100188X |
This book is the first one in which basic demographic models are rigorously formulated by using modern age-structured population dynamics, extended to study real-world population problems. Age structure is a crucial factor in understanding population phenomena, and the essential ideas in demography and epidemiology cannot be understood without mathematical formulation; therefore, this book gives readers a robust mathematical introduction to human population studies. In the first part of the volume, classical demographic models such as the stable population model and its linear extensions, density-dependent nonlinear models, and pair-formation models are formulated by the McKendrick partial differential equation and are analyzed from a dynamical system point of view. In the second part, mathematical models for infectious diseases spreading at the population level are examined by using nonlinear differential equations and a renewal equation. Since an epidemic can be seen as a nonlinear renewal process of an infected population, this book will provide a natural unification point of view for demography and epidemiology. The well-known epidemic threshold principle is formulated by the basic reproduction number, which is also a most important key index in demography. The author develops a universal theory of the basic reproduction number in heterogeneous environments. By introducing the host age structure, epidemic models are developed into more realistic demographic formulations, which are essentially needed to attack urgent epidemiological control problems in the real world.
Author | : J. M. Cushing |
Publisher | : American Mathematical Society |
Total Pages | : 293 |
Release | : 2024-02-29 |
Genre | : Mathematics |
ISBN | : 1470473348 |
This book offers an introduction to the use of matrix theory and linear algebra in modeling the dynamics of biological populations. Matrix algebra has been used in population biology since the 1940s and continues to play a major role in theoretical and applied dynamics for populations structured by age, body size or weight, disease states, physiological and behavioral characteristics, life cycle stages, or any of many other possible classification schemes. With a focus on matrix models, the book requires only first courses in multivariable calculus and matrix theory or linear algebra as prerequisites. The reader will learn the basics of modeling methodology (i.e., how to set up a matrix model from biological underpinnings) and the fundamentals of the analysis of discrete time dynamical systems (equilibria, stability, bifurcations, etc.). A recurrent theme in all chapters concerns the problem of extinction versus survival of a population. In addition to numerous examples that illustrate these fundamentals, several applications appear at the end of each chapter that illustrate the full cycle of model setup, mathematical analysis, and interpretation. The author has used the material over many decades in a variety of teaching and mentoring settings, including special topics courses and seminars in mathematical modeling, mathematical biology, and dynamical systems.
Author | : Shair Ahmad |
Publisher | : Walter de Gruyter |
Total Pages | : 244 |
Release | : 2013-05-28 |
Genre | : Mathematics |
ISBN | : 3110269848 |
In recent years, there has been a tremendous amount of research activity in the general area of population dynamics, particularly the Lotka-Volterra system, which has been a rich source of mathematical ideas from both theoretical and application points of view. In spite of the technological advances, many authors seem to be unaware of the bulk of the work that has been done in this area recently. This often leads to duplication of work and frustration to the authors as well as to the editors of various journals. This book is built out of lecture notes and consists of three chapters written by four mathematicians with overlapping expertise that cover a broad sector of the research in this area. Each chapter consists of carefully written introductory exposition, main breakthroughs, open questions and bibliographies. The chapters present recent developments on topics involving the dynamic behavior of solutions and topics such as stability theory, permanence, persistence, extinction, existence of positive solutions for the Lotka-Volterra and related systems. This fills a void in the literature, by making available a source book of relevant information on the theory, methods and applications of an important area of research.
Author | : Dung Le |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 236 |
Release | : 2022-10-24 |
Genre | : Mathematics |
ISBN | : 3110795132 |
The introduction of cross diffusivity opens many questions in the theory of reactiondiffusion systems. This book will be the first to investigate such problems presenting new findings for researchers interested in studying parabolic and elliptic systems where classical methods are not applicable. In addition, The Gagliardo-Nirenberg inequality involving BMO norms is improved and new techniques are covered that will be of interest. This book also provides many open problems suitable for interested Ph.D students.