Dynamic Response of Linear Mechanical Systems

Dynamic Response of Linear Mechanical Systems
Author: Jorge Angeles
Publisher: Springer Science & Business Media
Total Pages: 578
Release: 2011-09-15
Genre: Technology & Engineering
ISBN: 1441910263

Dynamic Response of Linear Mechanical Systems: Modeling, Analysis and Simulation can be utilized for a variety of courses, including junior and senior-level vibration and linear mechanical analysis courses. The author connects, by means of a rigorous, yet intuitive approach, the theory of vibration with the more general theory of systems. The book features: A seven-step modeling technique that helps structure the rather unstructured process of mechanical-system modeling A system-theoretic approach to deriving the time response of the linear mathematical models of mechanical systems The modal analysis and the time response of two-degree-of-freedom systems—the first step on the long way to the more elaborate study of multi-degree-of-freedom systems—using the Mohr circle Simple, yet powerful simulation algorithms that exploit the linearity of the system for both single- and multi-degree-of-freedom systems Examples and exercises that rely on modern computational toolboxes for both numerical and symbolic computations as well as a Solutions Manual for instructors, with complete solutions of a sample of end-of-chapter exercises Chapters 3 and 7, on simulation, include in each “Exercises” section a set of miniprojects that require code-writing to implement the algorithms developed in these chapters

Dynamic Response of Linear Mechanical Systems

Dynamic Response of Linear Mechanical Systems
Author: Jorge Angeles
Publisher: Springer Science & Business Media
Total Pages: 574
Release: 2011-09-15
Genre: Technology & Engineering
ISBN: 1441910271

Dynamic Response of Linear Mechanical Systems: Modeling, Analysis and Simulation can be utilized for a variety of courses, including junior and senior-level vibration and linear mechanical analysis courses. The author connects, by means of a rigorous, yet intuitive approach, the theory of vibration with the more general theory of systems. The book features: A seven-step modeling technique that helps structure the rather unstructured process of mechanical-system modeling A system-theoretic approach to deriving the time response of the linear mathematical models of mechanical systems The modal analysis and the time response of two-degree-of-freedom systems—the first step on the long way to the more elaborate study of multi-degree-of-freedom systems—using the Mohr circle Simple, yet powerful simulation algorithms that exploit the linearity of the system for both single- and multi-degree-of-freedom systems Examples and exercises that rely on modern computational toolboxes for both numerical and symbolic computations as well as a Solutions Manual for instructors, with complete solutions of a sample of end-of-chapter exercises Chapters 3 and 7, on simulation, include in each “Exercises” section a set of miniprojects that require code-writing to implement the algorithms developed in these chapters

Advanced Vibrations

Advanced Vibrations
Author: Reza N. Jazar
Publisher: Springer Nature
Total Pages: 894
Release: 2023-01-06
Genre: Technology & Engineering
ISBN: 3031163567

Now in an updated new edition, this textbook explains mechanical vibrations concepts in detail, concentrating on their practical use. This second edition includes the new chapter Multi-Degree-of-Freedom (MDOF) Time Response, as well as new sections covering superposition, music and vibrations, generalized coordinates and degrees-of-freedom, and first-order systems. Related theorems and formal proofs are provided, as are real-life applications. Students, researchers, and practicing engineers alike will appreciate the user-friendly presentation of a wealth of topics, including practical optimization for designing vibration isolators and transient and harmonic excitations. Advanced Vibrations: Theory and Application is an ideal text for students of engineering, designers, and practicing engineers.

Vehicle Vibrations

Vehicle Vibrations
Author: Reza N. Jazar
Publisher: Springer Nature
Total Pages: 527
Release: 2024-02-11
Genre: Technology & Engineering
ISBN: 3031434862

​Vehicle Vibrations: Linear and Nonlinear Analysis, Optimization, and Design is a self-contained textbook that offers complete coverage of vehicle vibration topics from basic to advanced levels. Written and designed to be used for automotive and mechanical engineering courses related to vehicles, the text provides students, automotive engineers, and research scientists with a solid understanding of the principles and application of vehicle vibrations from an applied viewpoint. Coverage includes everything you need to know to analyze and optimize a vehicle’s vibration, including vehicle vibration components, vehicle vibration analysis, flat ride vibration, tire-road separations, and smart suspensions.

Advances in Stochastic Structural Dynamics

Advances in Stochastic Structural Dynamics
Author: W. Q. Zhu
Publisher: CRC Press
Total Pages: 626
Release: 2003-05-13
Genre: Technology & Engineering
ISBN: 0203492951

Collection of technical papers presented at the 5th International Conference on Stochastic Structural Dynamics (SSD03) in Hangzhou, China during May 26-28, 2003. Topics include direct transfer substructure method for random response analysis, generation of bounded stochastic processes, and sample path behavior of Gaussian processes.

Dynamic Balancing of Mechanisms and Synthesizing of Parallel Robots

Dynamic Balancing of Mechanisms and Synthesizing of Parallel Robots
Author: Dan Zhang
Publisher: Springer
Total Pages: 532
Release: 2015-10-20
Genre: Technology & Engineering
ISBN: 3319176838

This book covers the state-of-the-art technologies in dynamic balancing of mechanisms with minimum increase of mass and inertia. The synthesis of parallel robots based on the Decomposition and Integration concept is also covered in detail. The latest advances are described, including different balancing principles, design of reactionless mechanisms with minimum increase of mass and inertia, and synthesizing parallel robots. This is an ideal book for mechanical engineering students and researchers who are interested in the dynamic balancing of mechanisms and synthesizing of parallel robots. This book also: · Broadens reader understanding of the synthesis of parallel robots based on the Decomposition and Integration concept · Reinforces basic principles with detailed coverage of different balancing principles, including input torque balancing mechanisms · Reviews exhaustively the key recent research into the design of reactionless mechanisms with minimum increase of mass and inertia, such as the design of reactionless mechanisms with auxiliary parallelograms, the design of reactionless mechanisms with flywheels, and the design of reactionless mechanisms by symmetrical structure design.

Transfer Matrix Method for Multibody Systems

Transfer Matrix Method for Multibody Systems
Author: Xiaoting Rui
Publisher: John Wiley & Sons
Total Pages: 1146
Release: 2018-10-02
Genre: Mathematics
ISBN: 1118724836

TRANSFER MATRIX METHOD FOR MULTIBODY SYSTEMS: THEORY AND APPLICATIONS Xiaoting Rui, Guoping Wang and Jianshu Zhang - Nanjing University of Science and Technology, China Featuring a new method of multibody system dynamics, this book introduces the transfer matrix method systematically for the first time. First developed by the lead author and his research team, this method has found numerous engineering and technological applications. Readers are first introduced to fundamental concepts like the body dynamics equation, augmented operator and augmented eigenvector before going in depth into precision analysis and computations of eigenvalue problems as well as dynamic responses. The book also covers a combination of mixed methods and practical applications in multiple rocket launch systems, self-propelled artillery as well as launch dynamics of on-ship weaponry. • Comprehensively introduces a new method of analyzing multibody dynamics for engineers • Provides a logical development of the transfer matrix method as applied to the dynamics of multibody systems that consist of interconnected bodies • Features varied applications in weaponry, aeronautics, astronautics, vehicles and robotics Written by an internationally renowned author and research team with many years' experience in multibody systems Transfer Matrix Method of Multibody System and Its Applications is an advanced level text for researchers and engineers in mechanical system dynamics. It is a comprehensive reference for advanced students and researchers in the related fields of aerospace, vehicle, robotics and weaponry engineering.

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems
Author: Charles M. Close
Publisher:
Total Pages: 708
Release: 1993
Genre: Mathematics
ISBN:

This text is intended for a first course in dynamic systems and is designed for use by sophomore and junior majors in all fields of engineering, but principally mechanical and electrical engineers. All engineers must understand how dynamic systems work and what responses can be expected from various physical systems.