Dynamic Calculus And Equations On Time Scales
Download Dynamic Calculus And Equations On Time Scales full books in PDF, epub, and Kindle. Read online free Dynamic Calculus And Equations On Time Scales ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Martin Bohner |
Publisher | : Springer Science & Business Media |
Total Pages | : 365 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461202019 |
On becoming familiar with difference equations and their close re lation to differential equations, I was in hopes that the theory of difference equations could be brought completely abreast with that for ordinary differential equations. [HUGH L. TURRITTIN, My Mathematical Expectations, Springer Lecture Notes 312 (page 10), 1973] A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both. [E. T. BELL, Men of Mathematics, Simon and Schuster, New York (page 13/14), 1937] The theory of time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in his PhD thesis [159] in 1988 (supervised by Bernd Aulbach) in order to unify continuous and discrete analysis. This book is an intro duction to the study of dynamic equations on time scales. Many results concerning differential equations carryover quite easily to corresponding results for difference equations, while other results seem to be completely different in nature from their continuous counterparts. The study of dynamic equations on time scales reveals such discrepancies, and helps avoid proving results twice, once for differential equa tions and once for difference equations. The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time scale, which is an arbitrary nonempty closed subset of the reals.
Author | : Martin Bohner |
Publisher | : Springer Science & Business Media |
Total Pages | : 354 |
Release | : 2011-06-28 |
Genre | : Mathematics |
ISBN | : 0817682309 |
Excellent introductory material on the calculus of time scales and dynamic equations.; Numerous examples and exercises illustrate the diverse application of dynamic equations on time scales.; Unified and systematic exposition of the topics allows good transitions from chapter to chapter.; Contributors include Anderson, M. Bohner, Davis, Dosly, Eloe, Erbe, Guseinov, Henderson, Hilger, Hilscher, Kaymakcalan, Lakshmikantham, Mathsen, and A. Peterson, founders and leaders of this field of study.; Useful as a comprehensive resource of time scales and dynamic equations for pure and applied mathematicians.; Comprehensive bibliography and index complete this text.
Author | : Svetlin G. Georgiev |
Publisher | : Springer |
Total Pages | : 886 |
Release | : 2019-05-03 |
Genre | : Mathematics |
ISBN | : 3030154203 |
This book is devoted to the qualitative theory of functional dynamic equations on time scales, providing an overview of recent developments in the field as well as a foundation to time scales, dynamic systems, and functional dynamic equations. It discusses functional dynamic equations in relation to mathematical physics applications and problems, providing useful tools for investigation for oscillations and nonoscillations of the solutions of functional dynamic equations on time scales. Practice problems are presented throughout the book for use as a graduate-level textbook and as a reference book for specialists of several disciplines, such as mathematics, physics, engineering, and biology.
Author | : Douglas R. Anderson |
Publisher | : CRC Press |
Total Pages | : 347 |
Release | : 2020-08-29 |
Genre | : Mathematics |
ISBN | : 100009393X |
The concept of derivatives of non-integer order, known as fractional derivatives, first appeared in the letter between L’Hopital and Leibniz in which the question of a half-order derivative was posed. Since then, many formulations of fractional derivatives have appeared. Recently, a new definition of fractional derivative, called the "fractional conformable derivative," has been introduced. This new fractional derivative is compatible with the classical derivative and it has attracted attention in areas as diverse as mechanics, electronics, and anomalous diffusion. Conformable Dynamic Equations on Time Scales is devoted to the qualitative theory of conformable dynamic equations on time scales. This book summarizes the most recent contributions in this area, and vastly expands on them to conceive of a comprehensive theory developed exclusively for this book. Except for a few sections in Chapter 1, the results here are presented for the first time. As a result, the book is intended for researchers who work on dynamic calculus on time scales and its applications. Features Can be used as a textbook at the graduate level as well as a reference book for several disciplines Suitable for an audience of specialists such as mathematicians, physicists, engineers, and biologists Contains a new definition of fractional derivative About the Authors Douglas R. Anderson is professor and chair of the mathematics department at Concordia College, Moorhead. His research areas of interest include dynamic equations on time scales and Ulam-type stability of difference and dynamic equations. He is also active in investigating the existence of solutions for boundary value problems. Svetlin G. Georgiev is currently professor at Sorbonne University, Paris, France and works in various areas of mathematics. He currently focuses on harmonic analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, dynamic calculus on time scales, and integral equations.
Author | : Svetlin G. Georgiev |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 336 |
Release | : 2023-09-18 |
Genre | : Mathematics |
ISBN | : 3111182975 |
The latest advancements in time scale calculus are the focus of this book. New types of time-scale integral transforms are discussed in the book, along with how they can be used to solve dynamic equations. Novel numerical techniques for partial dynamic equations on time scales are described. New time scale inequalities for exponentially convex functions are introduced as well.
Author | : Svetlin Georgiev Georgiev |
Publisher | : CRC Press |
Total Pages | : 0 |
Release | : 2024-08-26 |
Genre | : Mathematics |
ISBN | : 9781032070803 |
This book provides the first and second fundamental forms of surfaces on time scales. They are introduced minimal surfaces and geodesics on time scales. In the book are studied the covaraint derivatives on time scales, pseudo-spherical surfaces and \sigma_1, \sigma_2 manifolds on time scales.
Author | : Svetlin G. Georgiev |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 316 |
Release | : 2020-08-24 |
Genre | : Mathematics |
ISBN | : 3110705559 |
This book is devoted to recent developments of linear and nonlinear integral inequalities on time scales. The book is intended for the use in the field of dynamic calculus on time scales, dynamic equation and integral equations on time scales. It is also suitable for graduate courses in the above fields. The book is designed for those who have mathematical background on time scales calculus.
Author | : Ravi Agarwal |
Publisher | : Springer |
Total Pages | : 264 |
Release | : 2014-10-30 |
Genre | : Mathematics |
ISBN | : 3319110020 |
This is a monograph devoted to recent research and results on dynamic inequalities on time scales. The study of dynamic inequalities on time scales has been covered extensively in the literature in recent years and has now become a major sub-field in pure and applied mathematics. In particular, this book will cover recent results on integral inequalities, including Young's inequality, Jensen's inequality, Holder's inequality, Minkowski's inequality, Steffensen's inequality, Hermite-Hadamard inequality and Čebyšv's inequality. Opial type inequalities on time scales and their extensions with weighted functions, Lyapunov type inequalities, Halanay type inequalities for dynamic equations on time scales, and Wirtinger type inequalities on time scales and their extensions will also be discussed here in detail.
Author | : V. Lakshmikantham |
Publisher | : Springer Science & Business Media |
Total Pages | : 300 |
Release | : 2013-06-29 |
Genre | : Mathematics |
ISBN | : 1475724497 |
From a modelling point of view, it is more realistic to model a phenomenon by a dynamic system which incorporates both continuous and discrete times, namely, time as an arbitrary closed set of reals called time-scale or measure chain. It is therefore natural to ask whether it is possible to provide a framework which permits us to handle both dynamic systems simultaneously so that one can get some insight and a better understanding of the subtle differences of these two different systems. The answer is affirmative, and recently developed theory of dynamic systems on time scales offers the desired unified approach. In this monograph, we present the current state of development of the theory of dynamic systems on time scales from a qualitative point of view. It consists of four chapters. Chapter one develops systematically the necessary calculus of functions on time scales. In chapter two, we introduce dynamic systems on time scales and prove the basic properties of solutions of such dynamic systems. The theory of Lyapunov stability is discussed in chapter three in an appropriate setup. Chapter four is devoted to describing several different areas of investigations of dynamic systems on time scales which will provide an exciting prospect and impetus for further advances in this important area which is very new. Some important features of the monograph are as follows: It is the first book that is dedicated to a systematic development of the theory of dynamic systems on time scales which is of recent origin. It demonstrates the interplay of the two different theories, namely, the theory of continuous and discrete dynamic systems, when imbedded in one unified framework. It provides an impetus to investigate in the setup of time scales other important problems which might offer a better understanding of the intricacies of a unified study.£/LIST£ Audience: The readership of this book consists of applied mathematicians, engineering scientists, research workers in dynamic systems, chaotic theory and neural nets.
Author | : Svetlin G. Georgiev |
Publisher | : Springer |
Total Pages | : 403 |
Release | : 2016-10-30 |
Genre | : Mathematics |
ISBN | : 9462392285 |
This book offers the reader an overview of recent developments of integral equations on time scales. It also contains elegant analytical and numerical methods. This book is primarily intended for senior undergraduate students and beginning graduate students of engineering and science courses. The students in mathematical and physical sciences will find many sections of direct relevance. The book contains nine chapters and each chapter is pedagogically organized. This book is specially designed for those who wish to understand integral equations on time scales without having extensive mathematical background.