DSP for MATLAB and LabVIEW: Fundamentals of discrete signal processing

DSP for MATLAB and LabVIEW: Fundamentals of discrete signal processing
Author: Forester W. Isen
Publisher: Morgan & Claypool Publishers
Total Pages: 214
Release: 2008
Genre: Adaptive filters
ISBN: 1598298909

This book is Volume I of the series DSP for MATLAB(TM) and LabVIEW(TM). The entire series consists of four volumes that collectively cover basic digital signal processing in a practical and accessible manner, but which nonetheless include all essential foundation mathematics. As the series title implies, the scripts (of which there are more than 200) described in the text and supplied in code form (available at www.morganclaypool.com/page/isen) will run on both MATLAB and LabVIEW. Volume I consists of four chapters. The first chapter gives a brief overview of the field of digital signal processing. This is followed by a chapter detailing many useful signals and concepts, including convolution, recursion, difference equations, LTI systems, etc. The third chapter covers conversion from the continuous to discrete domain and back (i.e., analog-to-digital and digital-to-analog conversion), aliasing, the Nyquist rate, normalized frequency, conversion from one sample rate to another, waveform generation at various sample rates from stored wave data, and Mu-law compression. The fourth and final chapter of the present volume introduces the reader to many important principles of signal processing, including correlation, the correlation sequence, the Real DFT, correlation by convolution, matched filtering, simple FIR filters, and simple IIR filters. Chapter 4, in particular, provides an intuitive or "first principle" understanding of how digital filtering and frequency transforms work, preparing the reader for Volumes II and III, which provide, respectively, detailed coverage of discrete frequency transforms (including the Discrete Time Fourier Transform, the Discrete Fourier Transform, and the z-Transform) and digital filter design (FIR design using Windowing, Frequency Sampling, and Optimum Equiripple techniques, and Classical IIR design). Volume IV, the culmination of the series, is an introductory treatment of LMS Adaptive Filtering and applications. The text for all volumes contains many examples, and many useful computational scripts, augmented by demonstration scripts and LabVIEW Virtual Instruments (VIs) that can be run to illustrate various signal processing concepts graphically on the user's computer screen. Table of Contents: An Overview of DSP / Discrete Signals and Concepts / Sampling and Binary Representation / Transform and Filtering Principles

DSP for MATLABTM and LabVIEWTM III

DSP for MATLABTM and LabVIEWTM III
Author: Forester W. Isen
Publisher: Springer Nature
Total Pages: 234
Release: 2022-06-01
Genre: Technology & Engineering
ISBN: 303102530X

This book is Volume III of the series DSP for MATLABTM and LabVIEWTM. Volume III covers digital filter design, including the specific topics of FIR design via windowed-ideal-lowpass filter, FIR highpass, bandpass, and bandstop filter design from windowed-ideal lowpass filters, FIR design using the transition-band-optimized Frequency Sampling technique (implemented by Inverse-DFT or Cosine/Sine Summation Formulas), design of equiripple FIRs of all standard types including Hilbert Transformers and Differentiators via the Remez Exchange Algorithm, design of Butterworth, Chebyshev (Types I and II), and Elliptic analog prototype lowpass filters, conversion of analog lowpass prototype filters to highpass, bandpass, and bandstop filters, and conversion of analog filters to digital filters using the Impulse Invariance and Bilinear Transform techniques. Certain filter topologies specific to FIRs are also discussed, as are two simple FIR types, the Comb and Moving Average filters. The entire series consists of four volumes that collectively cover basic digital signal processing in a practical and accessible manner, but which nonetheless include all essential foundation mathematics. As the series title implies, the scripts (of which there are more than 200) described in the text and supplied in code form here will run on both MATLABTM and LabVIEWTM. The text for all volumes contains many examples, and many useful computational scripts, augmented by demonstration scripts and LabVIEWTM Virtual Instruments (VIs) that can be run to illustrate various signal processing concepts graphically on the user's computer screen. Volume I consists of four chapters that collectively set forth a brief overview of the field of digital signal processing, useful signals and concepts (including convolution, recursion, difference equations, LTI systems, etc), conversion from the continuous to discrete domain and back (i.e., analog-to-digital and digital-to-analog conversion), aliasing, the Nyquist rate, normalized frequency, sample rate conversion and Mu-law compression, and signal processing principles including correlation, the correlation sequence, the Real DFT, correlation by convolution, matched filtering, simple FIR filters, and simple IIR filters. Chapter four of Volume I, in particular, provides an intuitive or ""first principle"" understanding of how digital filtering and frequency transforms work. Volume II provides detailed coverage of discrete frequency transforms, including a brief overview of common frequency transforms, both discrete and continuous, followed by detailed treatments of the Discrete Time Fourier Transform (DTFT), the z-Transform (including definition and properties, the inverse z-transform, frequency response via z-transform, and alternate filter realization topologies including Direct Form, Direct Form Transposed, Cascade Form, Parallel Form, and Lattice Form), and the Discrete Fourier Transform (DFT) (including Discrete Fourier Series, the DFT-IDFT pair, DFT of common signals, bin width, sampling duration, and sample rate, the FFT, the Goertzel Algorithm, Linear, Periodic, and Circular convolution, DFT Leakage, and computation of the Inverse DFT). Volume IV, the culmination of the series, is an introductory treatment of LMS Adaptive Filtering and applications, and covers cost functions, performance surfaces, coefficient perturbation to estimate the gradient, the LMS algorithm, response of the LMS algorithm to narrow-band signals, and various topologies such as ANC (Active Noise Cancelling) or system modeling, Periodic Signal Removal/Prediction/Adaptive Line Enhancement (ALE), Interference Cancellation, Echo Cancellation (with single- and dual-H topologies), and Inverse Filtering/Deconvolution/Equalization. Table of Contents: Principles

DSP for MATLAB and LabVIEW: Fundamentals of discrete frequency transforms

DSP for MATLAB and LabVIEW: Fundamentals of discrete frequency transforms
Author: Forester W. Isen
Publisher: Morgan & Claypool Publishers
Total Pages: 216
Release: 2008
Genre: Adaptive filters
ISBN: 1598298933

The entire series consists of four volumes that collectively cover basic digital signal processing in a practical and accessible manner, but which nonetheless include all essential foundation mathematics. As the series title implies, the scripts (of which there are more than 200) described in the text and supplied in code form (available via the internet at http://www.morganclaypool.com/page/isen) will run on both MATLAB and LabVIEW. The text for all volumes contains many examples, and many useful computational scripts, augmented by demonstration scripts and LabVIEW Virtual Instruments (VIs) that can be run to illustrate various signal processing concepts graphically on the user's computer screen.^

DSP for MATLABTM and LabVIEWTM IV

DSP for MATLABTM and LabVIEWTM IV
Author: Forester Isen
Publisher: Springer Nature
Total Pages: 109
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 3031025318

This book is Volume IV of the series DSP for MATLABTM and LabVIEWTM. Volume IV is an introductory treatment of LMS Adaptive Filtering and applications, and covers cost functions, performance surfaces, coefficient perturbation to estimate the gradient, the LMS algorithm, response of the LMS algorithm to narrow-band signals, and various topologies such as ANC (Active Noise Cancelling) or system modeling, Noise Cancellation, Interference Cancellation, Echo Cancellation (with single- and dual-H topologies), and Inverse Filtering/Deconvolution. The entire series consists of four volumes that collectively cover basic digital signal processing in a practical and accessible manner, but which nonetheless include all essential foundation mathematics. As the series title implies, the scripts here will run on both MATLABTM and LabVIEWTM. The text for all volumes contains many examples, and many useful computational scripts, augmented by demonstration scripts and LabVIEWTM Virtual Instruments (VIs) that can be run to illustrate various signal processing concepts graphically on the user's computer screen. Volume I consists of four chapters that collectively set forth a brief overview of the field of digital signal processing, useful signals and concepts (including convolution, recursion, difference equations, LTI systems, etc), conversion from the continuous to discrete domain and back (i.e., analog-to-digital and digital-to-analog conversion), aliasing, the Nyquist rate, normalized frequency, sample rate conversion and Mu-law compression, and signal processing principles including correlation, the correlation sequence, the Real DFT, correlation by convolution, matched filtering, simple FIR filters, and simple IIR filters. Chapter 4 of Volume I, in particular, provides an intuitive or "first principle" understanding of how digital filtering and frequency transforms work. Volume II provides detailed coverage of discrete frequency transforms, including a brief overview of common frequency transforms, both discrete and continuous, followed by detailed treatments of the Discrete Time Fourier Transform (DTFT), the z-Transform (including definition and properties, the inverse z-transform, frequency response via z-transform, and alternate filter realization topologies including Direct Form, Direct Form Transposed, Cascade Form, Parallel Form, and Lattice Form), and the Discrete Fourier Transform (DFT) (including Discrete Fourier Series, the DFT-IDFT pair, DFT of common signals, bin width, sampling duration, and sample rate, the FFT, the Goertzel Algorithm, Linear, Periodic, and Circular convolution, DFT Leakage, and computation of the Inverse DFT). Volume III covers digital filter design, including the specific topics of FIR design via windowed-ideal-lowpass filter, FIR highpass, bandpass, and bandstop filter design from windowed-ideal lowpass filters, FIR design using the transition-band-optimized Frequency Sampling technique (implemented by Inverse-DFT or Cosine/Sine Summation Formulas), design of equiripple FIRs of all standard types including Hilbert Transformers and Differentiators via the Remez Exchange Algorithm, design of Butterworth, Chebyshev (Types I and II), and Elliptic analog prototype lowpass filters, conversion of analog lowpass prototype filters to highpass, bandpass, and bandstop filters, and conversion of analog filters to digital filters using the Impulse Invariance and Bilinear Transform techniques. Certain filter topologies specific to FIRs are also discussed, as are two simple FIR types, the Comb and Moving Average filters. Table of Contents: Introduction To LMS Adaptive Filtering / Applied Adaptive Filtering

DSP for MATLABTM and LabVIEWTM I

DSP for MATLABTM and LabVIEWTM I
Author: Forester Isen
Publisher: Springer Nature
Total Pages: 217
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 3031025288

This book is Volume I of the series DSP for MATLABTM and LabVIEWTM. The entire series consists of four volumes that collectively cover basic digital signal processing in a practical and accessible manner, but which nonetheless include all essential foundation mathematics. As the series title implies, the scripts (of which there are more than 200) described in the text and supplied in code form here will run on both MATLAB and LabVIEW. Volume I consists of four chapters. The first chapter gives a brief overview of the field of digital signal processing. This is followed by a chapter detailing many useful signals and concepts, including convolution, recursion, difference equations, LTI systems, etc. The third chapter covers conversion from the continuous to discrete domain and back (i.e., analog-to-digital and digital-to-analog conversion), aliasing, the Nyquist rate, normalized frequency, conversion from one sample rate to another, waveform generation at various sample rates from stored wave data, and Mu-law compression. The fourth and final chapter of the present volume introduces the reader to many important principles of signal processing, including correlation, the correlation sequence, the Real DFT, correlation by convolution, matched filtering, simple FIR filters, and simple IIR filters. Chapter 4, in particular, provides an intuitive or "first principle" understanding of how digital filtering and frequency transforms work, preparing the reader for Volumes II and III, which provide, respectively, detailed coverage of discrete frequency transforms (including the Discrete Time Fourier Transform, the Discrete Fourier Transform, and the z-Transform) and digital filter design (FIR design using Windowing, Frequency Sampling, and Optimum Equiripple techniques, and Classical IIR design). Volume IV, the culmination of the series, is an introductory treatment of LMS Adaptive Filtering and applications. The text for all volumes contains many examples, and many useful computational scripts, augmented by demonstration scripts and LabVIEW Virtual Instruments (VIs) that can be run to illustrate various signal processing concepts graphically on the user's computer screen. Table of Contents: An Overview of DSP / Discrete Signals and Concepts / Sampling and Binary Representation / Transform and Filtering Principles

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK
Author: Rulph Chassaing
Publisher: John Wiley & Sons
Total Pages: 612
Release: 2011-09-20
Genre: Science
ISBN: 1118210344

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK Now in a new edition—the most comprehensive, hands-on introduction to digital signal processing The first edition of Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK is widely accepted as the most extensive text available on the hands-on teaching of Digital Signal Processing (DSP). Now, it has been fully updated in this valuable Second Edition to be compatible with the latest version (3.1) of Texas Instruments Code Composer Studio (CCS) development environment. Maintaining the original’s comprehensive, hands-on approach that has made it an instructor’s favorite, this new edition also features: Added program examples that illustrate DSP concepts in real-time and in the laboratory Expanded coverage of analog input and output New material on frame-based processing A revised chapter on IIR, which includes a number of floating-point example programs that explore IIR filters more comprehensively More extensive coverage of DSP/BIOS All programs listed in the text—plus additional applications—which are available on a companion website No other book provides such an extensive or comprehensive set of program examples to aid instructors in teaching DSP in a laboratory using audio frequency signals—making this an ideal text for DSP courses at the senior undergraduate and postgraduate levels. It also serves as a valuable resource for researchers, DSP developers, business managers, and technology solution providers who are looking for an overview and examples of DSP algorithms implemented using the TMS320C6713 and TMS320C6416 DSK.

Online Experimentation: Emerging Technologies and IoT

Online Experimentation: Emerging Technologies and IoT
Author: Maria Teresa Restivo
Publisher: Lulu.com
Total Pages: 498
Release: 2012-02-12
Genre: Technology & Engineering
ISBN: 8460859770

Book describes online experimentation, using fundamentally emergent technologies to build the resources and considering the context of IoT.Online Experimentation: Emerging Technologies and IoT is suitable for all who is involved in the development design and building of the domain of remote experiments.

Encyclopedia of Information Science and Technology, Third Edition

Encyclopedia of Information Science and Technology, Third Edition
Author: Khosrow-Pour, Mehdi
Publisher: IGI Global
Total Pages: 7972
Release: 2014-07-31
Genre: Computers
ISBN: 1466658894

"This 10-volume compilation of authoritative, research-based articles contributed by thousands of researchers and experts from all over the world emphasized modern issues and the presentation of potential opportunities, prospective solutions, and future directions in the field of information science and technology"--Provided by publisher.

KNOWLEDGE REASONING AND PLANNING IN ARTIFICIAL INTELLIGENCE

KNOWLEDGE REASONING AND PLANNING IN ARTIFICIAL INTELLIGENCE
Author: Tri Duc Ta
Publisher: Xoffencerpublication
Total Pages: 220
Release: 2023-03-16
Genre: Business & Economics
ISBN: 9394707573

AI, which stands for "artificial intelligence," is a discipline of computer science that focuses on providing machines the capacity to solve complex problems in a way that is more akin to how humans go about doing it. In most instances, this involves taking aspects of human intelligence and implementing them as algorithms in a format that is accessible to computers. manner. It is possible to pick a strategy that is either more or less flexible or efficient depending on the requirements that are described, and the degree to which the intelligent behaviour seems artificial is directly proportional to the strategy that is selected. AI is most commonly associated with the field of computer science; however, it has many significant connections to other fields, including Mathematics, Psychology, Cognition, Biology, and Philosophy, amongst a great number of others. This is because AI seeks to model human behaviour and thought processes in computer systems. How far we go in our quest of constructing an artificial intelligence will ultimately be determined by the degree to which we are able to combine our knowledge obtained from each of these subfields. At the moment, artificial intelligence encompasses a vast number of subfields, ranging from general-purpose areas such as perception and logical reasoning to specific tasks such as playing chess, proving mathematical theorems, writing poetry, and diagnosing diseases. Some examples of these more specific tasks include: playing chess, writing poetry, and diagnosing diseases. Some examples of these more specific tasks include: playing chess, writing poetry, diagnosing diseases, and so on. Scientists who have been working on intellectual projects their whole lives often make the transition gradually into artificial intelligence, where they discover the tools and terminology necessary to organize and automate the work they have been doing their entire careers. Workers in artificial intelligence have the option of applying their approaches to any field in which humans engage in intellectual activity. Because of this, we may confidently call it a universal field.