Drying Of Porous Materials
Download Drying Of Porous Materials full books in PDF, epub, and Kindle. Read online free Drying Of Porous Materials ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Stefan Jan Kowalski |
Publisher | : Springer Science & Business Media |
Total Pages | : 235 |
Release | : 2007-04-30 |
Genre | : Technology & Engineering |
ISBN | : 1402054807 |
This book provides recent advances in research on drying of particulate and porous materials. It is based on a selection of papers presented at the XI Polish Drying Symposium 2005. The contributions cover theoretical, as well as experimental and modeling research on heat and mass transfer processes during drying of porous material and fluidized beds. The book is a pioneering contribution to the science and technology of drying of particulate solids.
Author | : Peng Xu |
Publisher | : CRC Press |
Total Pages | : 275 |
Release | : 2019-07-16 |
Genre | : Science |
ISBN | : 1351019201 |
Heat and Mass Transfer in Drying of Porous Media offers a comprehensive review of heat and mass transfer phenomena and mechanisms in drying of porous materials. It covers pore-scale and macro-scale models, includes various drying technologies, and discusses the drying dynamics of fibrous porous material, colloidal porous media and size-distributed particle system. Providing guidelines for mathematical modeling and design as well as optimization of drying of porous material, this reference offers useful information for researchers and students as well as engineers in drying technology, food processes, applied energy, mechanical, and chemical engineering.
Author | : Peisheng Liu |
Publisher | : Elsevier |
Total Pages | : 577 |
Release | : 2014-08-12 |
Genre | : Technology & Engineering |
ISBN | : 0124078370 |
Engineers and scientists alike will find this book to be an excellent introduction to the topic of porous materials, in particular the three main groups of porous materials: porous metals, porous ceramics, and polymer foams. Beginning with a general introduction to porous materials, the next six chapters focus on the processing and applications of each of the three main materials groups. The book includes such new processes as gel-casting and freeze-drying for porous ceramics and self-propagating high temperature synthesis (SHS) for porous metals. The applications discussed are relevant to a wide number of fields and industries, including aerospace, energy, transportation, construction, electronics, biomedical and others. The book concludes with a chapter on characterization methods for some basic parameters of porous materials. Porous Materials: Processing and Applications is an excellent resource for academic and industrial researchers in porous materials, as well as for upper-level undergraduate and graduate students in materials science and engineering, physics, chemistry, mechanics, metallurgy, and related specialties. - A comprehensive overview of processing and applications of porous materials – provides younger researchers, engineers and students with the best introduction to this class of materials - Includes three full chapters on modern applications - one for each of the three main groups of porous materials - Introduces readers to several characterization methods for porous materials, including methods for characterizing pore size, thermal conductivity, electrical resistivity and specific surface area
Author | : Mohammad U.H. Joardder |
Publisher | : Springer |
Total Pages | : 81 |
Release | : 2015-10-23 |
Genre | : Technology & Engineering |
ISBN | : 331923045X |
This Brief provides a comprehensive overview of porosity's effects on dried food quality. The factors influencing porosity during the various drying methods are explored in depth, as well as porosity's overall effect on food properties. The chemical reaction and stability of porosity are also covered, including sensory and mechanical properties. The work looks closely at the relationship between drying conditions, pore characteristics, and dried food quality. Porosity: Establishing the relationship between drying parameters and dried food quality looks at food from a material point of view, outlining water binding characteristics and structure homogenity. The Brief presents a comprehensive view of the factors affecting porosity in dried foods, from pressure and drying rate to temperature and coating treatment, and relates these to porosity effects during the five major drying processes. Moreover, this book discusses the effect of porosity on transfer mechanisms and quality attributes of food stuff. In conclusion, this work aims to establish the relationship between drying process, quality, and porosity in dried foods.
Author | : Haifei Zhang |
Publisher | : John Wiley & Sons |
Total Pages | : 379 |
Release | : 2018-05-16 |
Genre | : Science |
ISBN | : 3527807411 |
Filling a gap in the literature, this is the first book to focus on the fabrication of functional porous materials by using ice templating and freeze drying. Comprehensive in its scope, the volume covers such techniques as the fabrication of porous polymers, porous ceramics, biomimic strong composites, carbon nanostructured materials, nanomedicine, porous nanostructures by freeze drying of colloidal or nanoparticle suspensions, and porous materials by combining ice templating and other techniques. In addition, applications for each type of material are also discussed. Of great benefit to those working in the freeze-drying field and researchers in porous materials, materials chemistry, engineering, and the use of such materials for various applications, both in academia and industry.
Author | : A. V. Luikov |
Publisher | : Elsevier |
Total Pages | : 541 |
Release | : 2014-05-12 |
Genre | : Science |
ISBN | : 1483225682 |
Heat and Mass Transfer in Capillary-Porous Bodies describes the modern theory of heat and mass transfer on the basis of the thermodynamics of irreversible processes. This book provides a systematic account of the phenomena of heat and mass transfer in capillary-porous bodies. Organized into 10 chapters, this book begins with an overview of the processes of the transfer of heat and mass of a substance. This text then examines the application of the theory to the investigation of heat and mass exchange in walls and in technological processes for the manufacture of building materials. Other chapters consider the thermal properties of building materials by using the methods of the thermodynamics of mass transfer. The final chapter deals with the method of finite differences, which is applicable to the solution of problems of non-steady heat conduction. This book is a valuable resource for scientists, post-graduate students, engineers, and students in higher educational establishments for architectural engineering.
Author | : D.B. Das |
Publisher | : Springer Science & Business Media |
Total Pages | : 276 |
Release | : 2005-06-10 |
Genre | : Science |
ISBN | : 9781402035135 |
This book provides concise, up-to-date and easy-to-follow information on certain aspects of an ever important research area: multiphase flow in porous media. This flow type is of great significance in many petroleum and environmental engineering problems, such as in secondary and tertiary oil recovery, subsurface remediation and CO2 sequestration. This book contains a collection of selected papers (all refereed) from a number of well-known experts on multiphase flow. The papers describe both recent and state-of-the-art modeling and experimental techniques for study of multiphase flow phenomena in porous media. Specifically, the book analyses three advanced topics: upscaling, pore-scale modeling, and dynamic effects in multiphase flow in porous media. This will be an invaluable reference for the development of new theories and computer-based modeling techniques for solving realistic multiphase flow problems. Part of this book has already been published in a journal. Audience This book will be of interest to academics, researchers and consultants working in the area of flow in porous media.
Author | : J.L. Auriault |
Publisher | : CRC Press |
Total Pages | : 972 |
Release | : 2020-12-17 |
Genre | : Technology & Engineering |
ISBN | : 1000108090 |
These proceedings deal with the fundamentals and applications of poromechanics to geomechanics, material sciences, geophysics, acoustics and biomechanics. They discuss the state of the art in such topics as constitutive modelling and upscaling methods.
Author | : Rui Wu |
Publisher | : CRC Press |
Total Pages | : 213 |
Release | : 2022-11-09 |
Genre | : Science |
ISBN | : 1000763404 |
Mass Transfer–Driven Evaporation from Capillary Porous Media offers a comprehensive review of mass transfer–driven drying processes in capillary porous media, including pore-scale and macro-scale experiments and models. It covers kinetics of drying of a single pore, pore-scale experiments and models, macro-scale experiments and models, and understanding of the continuum model from pore-scale studies. The book: Explains the detailed transport processes in porous media during drying. Introduces cutting-edge visualization experiments of drying in porous media. Describes the pore network models of drying in porous media. Discusses the continuum models of drying in porous media based on pore-scale studies. Points out future research opportunities. Aimed at researchers, students and practicing engineers, this work provides vital fundamental and applied information to those working in drying technology, food processes, applied energy, and mechanical and chemical engineering.
Author | : Sadik Kakaç |
Publisher | : Springer Science & Business Media |
Total Pages | : 1083 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 9401132208 |
The rapid growth of literature on convective heat and mass transfer through porous media has brought both engineering and fundamental knowledge to a new state of completeness and depth. Additionally, several new questions of fundamental merit have arisen in several areas which bear direct relation to further advancement of basic knowledge and applications in this field. For example, the growth of fundamental heat transfer data and correlations for engineering use for saturated media has now reached the point where the relations for heat transfer coefficients and flow parameters are known well enough for design purposes. Multiple flow field regimes in natural convection have been identified in several important enclosure geometries. New questions have arisen on the nature of equations being used in theoretical studies, i. e. , the Validity of Darcy assumption is being brought into question; Wall effects in high and low velocity flow fields have been found to play a role in predicting transport coefficients; The formulation of transport problems in fractured media are being investigated as both an extension of those in a homogeneous medium and for application in engineering systems in geologic media and problems on saturated media are being addressed to determine their proper formulation and solution. The long standing problem of how to adequately formulate and solve problems of multi-phase heat and mass transfer in heterogeneous media is important in the technologies of chemical reactor engineering and enhanced oil recovery.