Droplet Microfluidics

Droplet Microfluidics
Author: Abraham Lee
Publisher: Royal Society of Chemistry
Total Pages: 315
Release: 2020-11-27
Genre: Science
ISBN: 1788017692

Edited by two leaders, this book has drawn together expertise from around the globe to form a unified, cohesive resource for the droplet microfluidics community. Starting with the basic theory of droplet microfluidics before introducing its use as a tool, the reader is treated to chapters on important techniques, including robust passive and active droplet manipulations and applications such as single cell analysis, which is key for drug discovery. This book is a go-to resource for the community yearning to adopt and promote droplet microfluidics into different applications.

Droplet Microfluidics

Droplet Microfluidics
Author: Carolyn Ren
Publisher: Royal Society of Chemistry
Total Pages: 315
Release: 2020-11-20
Genre: Science
ISBN: 1839162864

Droplet microfluidics offers tremendous potential as an enabling technology for high-throughput screening. It promises to yield novel techniques for personalised medicine, drug discovery, disease diagnosis, establishing chemical libraries, and the discovery of new materials. Despite the enormous potential to contribute to a broad range of applications, the expected adoption has not yet been seen, partly due to the interdisciplinary nature and the fact that, up until now, information has been scattered across the literature. This book goes a long way to addressing these issues. Edited by two leaders, this book has drawn together expertise from around the globe to form a unified, cohesive resource for the droplet microfluidics community. Starting with the basic theory of droplet microfluidics before introducing its use as a tool, the reader will be treated to chapters on important techniques, including robust passive and active droplet manipulations and applications such as single cell analysis, which is key for drug discovery. This book is a go-to resource for the community yearning to adopt and promote droplet microfluidics into different applications and will interest researchers and practitioners working across chemistry, biology, physics, materials science, micro- and nano-technology, and engineering.

Droplet Microfluidics

Droplet Microfluidics
Author: Eric Brouzes
Publisher: MDPI
Total Pages: 114
Release: 2021-05-06
Genre: Science
ISBN: 3036501843

Droplet microfluidics has dramatically developed in the past decade and has been established as a microfluidic technology that can translate into commercial products. Its rapid development and adoption have relied not only on an efficient stabilizing system (oil and surfactant), but also on a library of modules that can manipulate droplets at a high-throughput. Droplet microfluidics is a vibrant field that keeps evolving, with advances that span technology development and applications. Recent examples include innovative methods to generate droplets, to perform single-cell encapsulation, magnetic extraction, or sorting at an even higher throughput. The trend consists of improving parameters such as robustness, throughput, or ease of use. These developments rely on a firm understanding of the physics and chemistry involved in hydrodynamic flow at a small scale. Finally, droplet microfluidics has played a pivotal role in biological applications, such as single-cell genomics or high-throughput microbial screening, and chemical applications. This Special Issue will showcase all aspects of the exciting field of droplet microfluidics, including, but not limited to, technology development, applications, and open-source systems.

Designing Droplet Microfluidic Networks

Designing Droplet Microfluidic Networks
Author: Andreas Grimmer
Publisher: Springer
Total Pages: 145
Release: 2019-07-04
Genre: Technology & Engineering
ISBN: 3030207137

This book describes automatic methods for the design of droplet microfluidic networks. The authors discuss simulation and design methods which support the design process of droplet microfluidics in general, as well as design methods for a dedicated droplet routing mechanism, namely passive droplet routing. The methods discussed allow for simulating a microfluidic design on a high-abstraction level, which facilitates early validation of whether a design works as intended, automatically dimensioning a microfluidic design, so that constraints like flow conditions are satisfied, and automatically generating meander designs for the respective needs and fabrication settings. Dedicated methods for passive droplet routing are discussed and allow for designing application-specific architectures for a given set of experiments, as well as generating droplet sequences realizing the respective experiments. Together, these methods provide a comprehensive “toolbox" for designers working on droplet microfluidic networks in general and an integrated design flow for the passive droplet routing mechanism in particular. Provides both a comprehensive “toolbox" for designers working on droplet microfluidic networks in general and an integrated design flow for the passive droplet routing mechanism in particular; Describes for the first time CAD methods for droplet microfluidic networks, along with the first integrated design process; Includes open source implementations, in order to reach the largest possible user group within the domain of microfluidics.

Droplet and Digital Microfluidics

Droplet and Digital Microfluidics
Author: Sanket Goel
Publisher: Elsevier
Total Pages: 276
Release: 2024-03-11
Genre: Technology & Engineering
ISBN: 0443154171

Droplet and Digital Microfluidics: Ideation to Implementation is a detailed introduction to the dynamics of droplet and digital microfluidics, also featuring coverage of new methods and applications. The explosion of applications of microelectromechanical systems (MEMS) in recent years has driven demand for expertise and innovation in fluid flow in the microchannels they contain. In this book, detailed descriptions of methods for biological and chemical applications of microfluidics are provided, along with supporting foundational knowledge. In addition, the principles of droplet and digital microfluidics are explained, along with their different applications and governing physics. New additions to the technological knowledgebase that enable advances in droplet and digital microfluidics include machine learning and exciting future avenues for research. - Provides step-by-step fabrication, testing, and characterization instructions in each chapter to support implementation - Includes explanations of applications and methods in biological and chemical settings - Describes the path to automation of digital and droplet microfluidic platforms

Microfluidics

Microfluidics
Author: Sagnik Basuray
Publisher: Springer Science & Business Media
Total Pages: 352
Release: 2011-10-05
Genre: Science
ISBN: 3642230490

Flow Control Methods and Devices in Micrometer Scale Channels, by Shuichi Shoji and Kentaro Kawai. Micromixing Within Microfluidic Devices, by Lorenzo Capretto, Wei Cheng, Martyn Hill and Xunli Zhang. Basic Technologies for Droplet Microfluidics, by Shaojiang Zeng, Xin Liu, Hua Xie and Bingcheng Lin. Electrorheological Fluid and Its Applications in Microfluidics, by Limu Wang, Xiuqing Gong and Weijia Wen. Biosensors in Microfluidic Chips, by Jongmin Noh, Hee Chan Kim and Taek Dong Chung. A Nanomembrane-Based Nucleic Acid Sensing Platform for Portable Diagnostics, by Satyajyoti Senapati, Sagnik Basuray, Zdenek Slouka, Li-Jing Cheng and Hsueh-Chia Chang. Optical Detection Systems on Microfluidic Chips, by Hongwei Gai, Yongjun Li and Edward S. Yeung. Integrated Microfluidic Systems for DNA Analysis, by Samuel K. Njoroge, Hui-Wen Chen, Małgorzata A. Witek and Steven A. Soper. Integrated Multifunctional Microfluidics for Automated Proteome Analyses, by John K. Osiri, Hamed Shadpour, Małgorzata A. Witek and Steven A. Soper. Cells in Microfluidics, by Chi Zhang and Danny van Noort. Microfluidic Platform for the Study of Caenorhabditis elegans,by Weiwei Shi, Hui Wen, Bingcheng Lin and Jianhua Qin.

Microfluidics for Single-Cell Analysis

Microfluidics for Single-Cell Analysis
Author: Jin-Ming Lin
Publisher: Springer Nature
Total Pages: 263
Release: 2019-08-28
Genre: Science
ISBN: 9813297298

This book summarizes the various microfluidic-based approaches for single-cell capture, isolation, manipulation, culture and observation, lysis, and analysis. Single-cell analysis reveals the heterogeneities in morphology, functions, composition, and genetic performance of seemingly identical cells, and advances in single-cell analysis can overcome the difficulties arising due to cell heterogeneity in the diagnostics for a targeted model of disease. This book provides a detailed review of the state-of-the-art techniques presenting the pros and cons of each of these methods. It also offers lessons learned and tips from front-line investigators to help researchers overcome bottlenecks in their own studies. Highlighting a number of techniques, such as microfluidic droplet techniques, combined microfluidics-mass-spectrometry systems, and nanochannel sampling, it describes in detail a new microfluidic chip-based live single-cell extractor (LSCE) developed in the editor’s laboratory, which opens up new avenues to use open microfluidics in single-cell extraction, single-cell mass spectrometric analysis, single-cell adhesion analysis and subcellular operations. Serving as both an elementary introduction and advanced guidebook, this book interests and inspires scholars and students who are currently studying or wish to study microfluidics-based cell analysis methods.

Microfluidics for Pharmaceutical Applications

Microfluidics for Pharmaceutical Applications
Author: Hélder A. Santos
Publisher: William Andrew
Total Pages: 498
Release: 2018-10-12
Genre: Technology & Engineering
ISBN: 0128126604

Microfluidics for Pharmaceutical Applications: From Nano/Micro Systems Fabrication to Controlled Drug Delivery is a concept-orientated reference that features case studies on utilizing microfluidics for drug delivery applications. It is a valuable learning reference on microfluidics for drug delivery applications and assists practitioners developing novel drug delivery platforms using microfluidics. It explores advances in microfluidics for drug delivery applications from different perspectives, covering device fabrication, fluid dynamics, cutting-edge microfluidic technology in the global drug delivery industry, lab-on-chip nano/micro fabrication and drug encapsulation, cell encapsulation and delivery, and cell- drug interaction screening. These microfluidic platforms have revolutionized the drug delivery field, but also show great potential for industrial applications. - Presents detailed coverage on the fabrication of novel drug delivery systems with desired characteristics, such as uniform size, Janus particles, and particular or combined responsiveness - Includes a variety of case studies that explain principles - Focuses on commercialization, cost, safety, society and educational issues of microfluidic applications, showing how microfluidics is used in the real world

Microfluidics and Nanotechnology

Microfluidics and Nanotechnology
Author: Eric Lagally
Publisher: CRC Press
Total Pages: 290
Release: 2017-12-19
Genre: Medical
ISBN: 1466594918

An increasing number of technologies are being used to detect minute quantities of biomolecules and cells. However, it can be difficult to determine which technologies show the most promise for high-sensitivity and low-limit detection in different applications. Microfluidics and Nanotechnology: Biosensing to the Single Molecule Limit details proven approaches for the detection of single cells and even single molecules—approaches employed by the world’s foremost microfluidics and nanotechnology laboratories. While similar books concentrate only on microfluidics or nanotechnology, this book focuses on the combination of soft materials (elastomers and other polymers) with hard materials (semiconductors, metals, and glass) to form integrated detection systems for biological and chemical targets. It explores physical and chemical—as well as contact and noncontact—detection methods, using case studies to demonstrate system capabilities. Presenting a snapshot of the current state of the art, the text: Explains the theory behind different detection techniques, from mechanical resonators for detecting cell density to fiber-optic methods for detecting DNA hybridization, and beyond Examines microfluidic advances, including droplet microfluidics, digital microfluidics for manipulating droplets on the microscale, and more Highlights an array of technologies to allow for a comparison of the fundamental advantages and challenges of each, as well as an appreciation of the power of leveraging scalability and integration to achieve sensitivity at low cost Microfluidics and Nanotechnology: Biosensing to the Single Molecule Limit not only serves as a quick reference for the latest achievements in biochemical detection at the single-cell and single-molecule levels, but also provides researchers with inspiration for further innovation and expansion of the field.