Doping in III-V Semiconductors

Doping in III-V Semiconductors
Author: E. Fred Schubert
Publisher: E. Fred Schubert
Total Pages: 624
Release: 2015-08-18
Genre: Science
ISBN: 0986382639

This is the first book to describe thoroughly the many facets of doping in compound semiconductors. Equal emphasis is given to the fundamental materials physics and to the technological aspects of doping. The author describes various doping techniques, including doping during epitaxial growth, doping by implantation, and doping by diffusion. The key characteristics of all dopants that have been employed in III-V semiconductors are discussed. In addition, general characteristics of dopants are analyzed, including the electrical activity, saturation, amphotericity, autocompensation, and maximum attainable dopant concentration. Redistribution effects are important in semiconductor microstructures. Linear and non-linear diffusion, different microscopic diffusion mechanisms, surface segregation, surface drift, surface migration, impurity-induced disordering, and the respective physical driving mechanisms are illustrated. Topics related to basic impurity theory include the hydrogenic model for shallow impurities, linear screening, density of states, classical and quantum statistics, the law of mass action, as well as many analytic approximations for the Fermi-Dirac integral for three-, two- and one dimensional systems. The timely topic of highly doped semiconductors, including band tails, impurity bands, bandgap renormalization, the Mott transition, and the Burstein-Moss shift, is discussed as well. Doping is essential in many semiconductor heterostructures including high-mobility selectively doped heterostructures, quantum well and quantum barrier structures, doping superlattice structures and d-doping structures. Technologically important deep levels are summarized, including Fe, Cr, and the DX-center, the EL2 defect, and rare-earth impurities. The properties of deep levels are presented phenomenologically, including emission, capture, Shockley-Read recombination, the Poole-Frenkel effect, lattice relaxation, and other effects. The final chapter is dedicated to the experimental characterization of impurities. This book will be of interest to graduate students, researchers and development engineers in the fields of electrical engineering, materials science, physics, and chemistry working on semiconductors. The book may also be used as a text for graduate courses in electrical engineering and materials science.

Delta-doping of Semiconductors

Delta-doping of Semiconductors
Author: E. F. Schubert
Publisher: Cambridge University Press
Total Pages: 628
Release: 1996-03-14
Genre: Science
ISBN: 9780521482882

This book is the first to give a comprehensive review of the theory, fabrication, characterisation, and device applications of abrupt, shallow, and narrow doping profiles in semiconductors. Such doping profiles are a key element in the development of modern semiconductor technology. After an introductory chapter setting out the basic theoretical and experimental concepts involved, the fabrication of abrupt and narrow doping profiles by several different techniques, including epitaxial growth, is discussed. The techniques for characterising doping distributions are then presented, followed by several chapters devoted to the inherent physical properties of narrow doping profiles. The latter part of the book deals with specific devices. The book will be of great interest to graduate students, researchers and engineers in the fields of semiconductor physics and microelectronic engineering.

Rare Earth and Transition Metal Doping of Semiconductor Materials

Rare Earth and Transition Metal Doping of Semiconductor Materials
Author: Volkmar Dierolf
Publisher: Woodhead Publishing
Total Pages: 472
Release: 2016-01-23
Genre: Science
ISBN: 008100060X

Rare Earth and Transition Metal Doping of Semiconductor Material explores traditional semiconductor devices that are based on control of the electron's electric charge. This book looks at the semiconductor materials used for spintronics applications, in particular focusing on wide band-gap semiconductors doped with transition metals and rare earths. These materials are of particular commercial interest because their spin can be controlled at room temperature, a clear opposition to the most previous research on Gallium Arsenide, which allowed for control of spins at supercold temperatures. Part One of the book explains the theory of magnetism in semiconductors, while Part Two covers the growth of semiconductors for spintronics. Finally, Part Three looks at the characterization and properties of semiconductors for spintronics, with Part Four exploring the devices and the future direction of spintronics. - Examines materials which are of commercial interest for producing smaller, faster, and more power-efficient computers and other devices - Analyzes the theory behind magnetism in semiconductors and the growth of semiconductors for spintronics - Details the properties of semiconductors for spintronics

Topics in Growth and Device Processing of III-V Semiconductors

Topics in Growth and Device Processing of III-V Semiconductors
Author: S. J. Pearton
Publisher: World Scientific
Total Pages: 568
Release: 1996
Genre: Technology & Engineering
ISBN: 9789810218843

This book describes advanced epitaxial growth and self-aligned processing techniques for the fabrication of III-V semiconductor devices such as heterojunction bipolar transistors and high electron mobility transistors. It is the first book to describe the use of carbon-doping and low damage dry etching techniques that have proved indispensable in making reliable, high performance devices. These devices are used in many applications such as cordless telephones and high speed lightwave communication systems.

Atomic Diffusion in III-V Semiconductors

Atomic Diffusion in III-V Semiconductors
Author: Brian Tuck
Publisher: CRC Press
Total Pages: 252
Release: 1988-01-01
Genre: Science
ISBN: 9780852743515

III-V semiconductors, of which gallium arsenide is the best known, have been important for some years and appear set to become much more so in the future. They have principally contributed to two technologies: microwave devices and optoelectronics. Recent advances in the production of thin layers have made possible a whole new range of devices based on multi-quantum wells. The heat treatments used in the manufacture of semiconductor devices means that some diffusion must take place. A good understanding of diffusion processes is therefore essential to maintain control over the technology. Atomic Diffusion in III-V Semiconductors presents a lucid account of the experimental work that has been carried out on diffusion in III-Vs and explores the advanced models that explain the results. A review of the III-V group of semiconductors outlines the special properties that make them so attractive for some types of devices. Discussion of the basic elements of diffusion in semiconductors provides the theory necessary to understand the subject in depth, and the book gives hints on how to assess the published data. Chapters on diffusion of shallow donors, shallow acceptors, transition elements, and very fast-diffusing elements provide a critical review of published works. The book also presents the neglected subject of self-diffusion, including a section on superlattices. Atomic Diffusion in III-V Semiconductors will be of interest to research workers in semiconductor science and technology, and to postgraduate students in physics, electronics, and materials science.

III-V Compound Semiconductors

III-V Compound Semiconductors
Author: Tingkai Li
Publisher: CRC Press
Total Pages: 588
Release: 2016-04-19
Genre: Science
ISBN: 1439815232

Silicon-based microelectronics has steadily improved in various performance-to-cost metrics. But after decades of processor scaling, fundamental limitations and considerable new challenges have emerged. The integration of compound semiconductors is the leading candidate to address many of these issues and to continue the relentless pursuit of more

Defects in Semiconductors

Defects in Semiconductors
Author:
Publisher: Academic Press
Total Pages: 458
Release: 2015-06-08
Genre: Technology & Engineering
ISBN: 0128019409

This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoretical paths. - Expert contributors - Reviews of the most important recent literature - Clear illustrations - A broad view, including examination of defects in different semiconductors

Properties of Aluminium Gallium Arsenide

Properties of Aluminium Gallium Arsenide
Author: Sadao Adachi
Publisher: IET
Total Pages: 354
Release: 1993
Genre: Science
ISBN: 9780852965580

The alloy system A1GaAs/GaAs is potentially of great importance for many high-speed electronics and optoelectronic devices, because the lattice parameter difference GaAs and A1GaAs is very small, which promises an insignificant concentration of undesirable interface states. Thanks to this prominent feature, a number of interesting properties and phenomena, such as high-mobility low-dimensional carrier gases, resonant tunnelling and fractional quantum Hall effect, have been found in the A1GaAs/GaAs heterostructure system. New devices, such as modulation-doped FETs, heterojunction bipolar transistors, resonant tunnelling transistors, quantum-well lasers, and other photonic and quantum-effect devices, have also been developed recently using this material system. These areas are recognized as not being the most interesting and active fields in semiconductor physics and device engineering.