Dns Of Hypersonic Turbulent Boundary Layers
Download Dns Of Hypersonic Turbulent Boundary Layers full books in PDF, epub, and Kindle. Read online free Dns Of Hypersonic Turbulent Boundary Layers ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Holger Babinsky |
Publisher | : Cambridge University Press |
Total Pages | : 481 |
Release | : 2011-09-12 |
Genre | : Technology & Engineering |
ISBN | : 1139498649 |
Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.
Author | : Alexander J. Smits |
Publisher | : Springer Science & Business Media |
Total Pages | : 418 |
Release | : 2006-05-11 |
Genre | : Science |
ISBN | : 0387263055 |
A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.
Author | : Michel Deville |
Publisher | : Springer Science & Business Media |
Total Pages | : 166 |
Release | : 2009-03-20 |
Genre | : Technology & Engineering |
ISBN | : 3642002625 |
Contains seven keynote lectures of the TI 2006 conference that was held in Porquerolles, May 29-June 2, 2006. This book offers a view on theory, experiments and numerical simulations in the field of turbulence.
Author | : Tuncer Cebeci |
Publisher | : Elsevier |
Total Pages | : 423 |
Release | : 2012-12-02 |
Genre | : Technology & Engineering |
ISBN | : 0323151051 |
Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculating two-dimensional and axisymmetric laminar and turbulent boundary layers. This book will be useful to readers who have advanced knowledge in fluid mechanics, especially to engineers who study the important problems of design.
Author | : Chaoqun Liu |
Publisher | : Bentham Science Publishers |
Total Pages | : 343 |
Release | : 2020-04-28 |
Genre | : Science |
ISBN | : 9811437580 |
The knowledge of quantitative turbulence mechanics relies heavily upon the definition of the concept of a vortex in mathematical terms. This reference work introduces the reader to Liutex, which is an accepted, accurate and mathematical definition of a vortex. The core of this book is a compilation of several papers on the subject. presented in the 13th World Congress of Computational Mechanics (WCCM2018), Symposium 704, Mathematics and Computations for Multiscale Structures of Turbulent and Other Complex Flows, New York, United States on July 27, 2018. This compilation also includes other research papers which explain the work done on the vortex definition, vortex identification and turbulence structure from different insight angles including mathematics, computational physics and experiments. The thirteen chapters in this volume will be informative to scientists and engineers who are interested in advanced theories about fluid dynamics, vortex science and turbulence research.
Author | : Hans-Joachim Heinemann |
Publisher | : Springer Science & Business Media |
Total Pages | : 507 |
Release | : 2006-12-20 |
Genre | : Technology & Engineering |
ISBN | : 1402041500 |
This book collects peer-reviewed lectures of the IUTAM Symposium on the 100th anniversary of Boundary Layer research. No other reference of this calibre, on this topic, is likely to be published for the next decade. Covers classification, definition and mathematics of boundary layers; instability of boundary layers and transition; boundary layers control; turbulent boundary layers; numerical treatment and boundary layer modelling; special effects in boundary layers.
Author | : Tuncer Cebeci |
Publisher | : Elsevier |
Total Pages | : 391 |
Release | : 2004-04-20 |
Genre | : Technology & Engineering |
ISBN | : 0080527183 |
Modelling and Computation of Turbulent Flows has been written by one of the most prolific authors in the field of CFD. Professor of aerodynamics at SUPAERO and director of DMAE at ONERA, the author calls on both his academic and industrial experience when presenting this work. The field of CFD is strongly represented by the following corporate companies; Boeing; Airbus; Thales; United Technologies and General Electric, government bodies and academic institutions also have a strong interest in this exciting field. Each chapter has also been specifically constructed to constitute as an advanced textbook for PhD candidates working in the field of CFD, making this book essential reading for researchers, practitioners in industry and MSc and MEng students.* A broad overview of the development and application of Computational Fluid Dynamics (CFD), with real applications to industry* A Free CD-Rom which contains computer program's suitable for solving non-linear equations which arise in modeling turbulent flows* Professor Cebeci has published over 200 technical papers and 14 books, a world authority in the field of CFD
Author | : John J. Bertin |
Publisher | : AIAA |
Total Pages | : 644 |
Release | : 1994 |
Genre | : Science |
ISBN | : 9781563470363 |
A modern treatment of hypersonic aerothermodynamics for students, engineers, scientists, and program managers involved in the study and application of hypersonic flight. It assumes an understanding of the basic principles of fluid mechanics, thermodynamics, compressible flow, and heat transfer. Ten chapters address: general characterization of hypersonic flows; basic equations of motion; defining the aerothermodynamic environment; experimental measurements of hypersonic flows; stagnation-region flowfield; the pressure distribution; the boundary layer and convective heat transfer; aerodynamic forces and moments; viscous interactions; and aerothermodynamics and design considerations. Includes sample exercises and homework problems. Annotation copyright by Book News, Inc., Portland, OR
Author | : Thomas B. Gatski |
Publisher | : Academic Press |
Total Pages | : 343 |
Release | : 2013-03-05 |
Genre | : Science |
ISBN | : 012397318X |
Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current trends. - An introduction to current techniques in compressible turbulent flow analysis - An approach that enables engineers to identify and solve complex compressible flow challenges - Prediction methodologies, including the Reynolds-averaged Navier Stokes (RANS) method, scale filtered methods and direct numerical simulation (DNS) - Current strategies focusing on compressible flow control
Author | : Chaoqun Liu |
Publisher | : Bentham Science Publishers |
Total Pages | : 321 |
Release | : 2017-12-08 |
Genre | : Technology & Engineering |
ISBN | : 1681085976 |
This volume presents an implicitly implemented large eddy simulation (ILES) by using the fifth order bandwidth-optimized WENO scheme. The chosen method is applied to make comprehensive studies on ramp flows with and without control at Mach 2.5 and Re=5760. Flow control in the form of microramp vortex generators (MVG) is applied. The results show that a MVG can distinctly reduce the separation zone at the ramp corner and lower the boundary layer shape factor under simulated conditions. A series of new findings about the MVG-ramp flow are obtained, including structures relevant to surface pressure, three-dimensional structures of the re-compression shock waves, a complete surface separation pattern, momentum deficit and a new secondary vortex system. A new mechanism of shock-boundary layer interaction control by MVG associated with a series of vortex rings is also presented. Vortex rings strongly interact with air flow and play an important role in the separation zone reduction. Additionally, readers will learn about the governing equation, boundary condition, high quality grid generation, high order shock capturing scheme and DNS inflow condition in detail. This volume will, therefore, serve as a useful reference for aerospace researchers using LES methods to study shock boundary layer interaction and supersonic flow control.