Distributed Computing with Python

Distributed Computing with Python
Author: Francesco Pierfederici
Publisher: Packt Publishing Ltd
Total Pages: 171
Release: 2016-04-12
Genre: Computers
ISBN: 1785887041

Harness the power of multiple computers using Python through this fast-paced informative guide About This Book You'll learn to write data processing programs in Python that are highly available, reliable, and fault tolerant Make use of Amazon Web Services along with Python to establish a powerful remote computation system Train Python to handle data-intensive and resource hungry applications Who This Book Is For This book is for Python developers who have developed Python programs for data processing and now want to learn how to write fast, efficient programs that perform CPU-intensive data processing tasks. What You Will Learn Get an introduction to parallel and distributed computing See synchronous and asynchronous programming Explore parallelism in Python Distributed application with Celery Python in the Cloud Python on an HPC cluster Test and debug distributed applications In Detail CPU-intensive data processing tasks have become crucial considering the complexity of the various big data applications that are used today. Reducing the CPU utilization per process is very important to improve the overall speed of applications. This book will teach you how to perform parallel execution of computations by distributing them across multiple processors in a single machine, thus improving the overall performance of a big data processing task. We will cover synchronous and asynchronous models, shared memory and file systems, communication between various processes, synchronization, and more. Style and Approach This example based, step-by-step guide will show you how to make the best of your hardware configuration using Python for distributing applications.

Distributed Computing with Python

Distributed Computing with Python
Author: Francesco Pierfederici
Publisher:
Total Pages: 170
Release: 2016-04-11
Genre: Computers
ISBN: 9781785889691

Harness the power of multiple computers using Python through this fast-paced informative guideAbout This Book- You'll learn to write data processing programs in Python that are highly available, reliable, and fault tolerant- Make use of Amazon Web Services along with Python to establish a powerful remote computation system- Train Python to handle data-intensive and resource hungry applicationsWho This Book Is ForThis book is for Python developers who have developed Python programs for data processing and now want to learn how to write fast, efficient programs that perform CPU-intensive data processing tasks.What You Will Learn- Get an introduction to parallel and distributed computing- See synchronous and asynchronous programming- Explore parallelism in Python- Distributed application with Celery- Python in the Cloud- Python on an HPC cluster- Test and debug distributed applicationsIn DetailCPU-intensive data processing tasks have become crucial considering the complexity of the various big data applications that are used today. Reducing the CPU utilization per process is very important to improve the overall speed of applications.This book will teach you how to perform parallel execution of computations by distributing them across multiple processors in a single machine, thus improving the overall performance of a big data processing task. We will cover synchronous and asynchronous models, shared memory and file systems, communication between various processes, synchronization, and more.Style and ApproachThis example based, step-by-step guide will show you how to make the best of your hardware configuration using Python for distributing applications.

Concurrent and Distributed Computing in Java

Concurrent and Distributed Computing in Java
Author: Vijay K. Garg
Publisher: John Wiley & Sons
Total Pages: 331
Release: 2005-01-28
Genre: Computers
ISBN: 0471721263

Concurrent and Distributed Computing in Java addresses fundamental concepts in concurrent computing with Java examples. The book consists of two parts. The first part deals with techniques for programming in shared-memory based systems. The book covers concepts in Java such as threads, synchronized methods, waits, and notify to expose students to basic concepts for multi-threaded programming. It also includes algorithms for mutual exclusion, consensus, atomic objects, and wait-free data structures. The second part of the book deals with programming in a message-passing system. This part covers resource allocation problems, logical clocks, global property detection, leader election, message ordering, agreement algorithms, checkpointing, and message logging. Primarily a textbook for upper-level undergraduates and graduate students, this thorough treatment will also be of interest to professional programmers.

Elements of Distributed Computing

Elements of Distributed Computing
Author: Vijay K. Garg
Publisher: John Wiley & Sons
Total Pages: 448
Release: 2002-05-23
Genre: Computers
ISBN: 9780471036005

Mit der Verfügbarkeit verteilter Systeme wächst der Bedarf an einer fundamentalen Diskussion dieses Gebiets. Hier ist sie! Abgedeckt werden die grundlegenden Konzepte wie Zeit, Zustand, Gleichzeitigkeit, Reihenfolge, Kenntnis, Fehler und Übereinstimmung. Die Betonung liegt auf der Entwicklung allgemeiner Mechanismen, die auf eine Vielzahl von Problemen angewendet werden können. Sorgfältig ausgewählte Beispiele (Taktgeber, Sperren, Kameras, Sensoren, Controller, Slicer und Syncronizer) dienen gleichzeitig der Vertiefung theoretischer Aspekte und deren Umsetzung in die Praxis. Alle vorgestellten Algorithmen werden mit durchschaubaren, induktionsbasierten Verfahren bewiesen.

Python Parallel Programming Cookbook

Python Parallel Programming Cookbook
Author: Giancarlo Zaccone
Publisher: Packt Publishing Ltd
Total Pages: 286
Release: 2015-08-26
Genre: Computers
ISBN: 1785286722

Master efficient parallel programming to build powerful applications using Python About This Book Design and implement efficient parallel software Master new programming techniques to address and solve complex programming problems Explore the world of parallel programming with this book, which is a go-to resource for different kinds of parallel computing tasks in Python, using examples and topics covered in great depth Who This Book Is For Python Parallel Programming Cookbook is intended for software developers who are well versed with Python and want to use parallel programming techniques to write powerful and efficient code. This book will help you master the basics and the advanced of parallel computing. What You Will Learn Synchronize multiple threads and processes to manage parallel tasks Implement message passing communication between processes to build parallel applications Program your own GPU cards to address complex problems Manage computing entities to execute distributed computational tasks Write efficient programs by adopting the event-driven programming model Explore the cloud technology with DJango and Google App Engine Apply parallel programming techniques that can lead to performance improvements In Detail Parallel programming techniques are required for a developer to get the best use of all the computational resources available today and to build efficient software systems. From multi-core to GPU systems up to the distributed architectures, the high computation of programs throughout requires the use of programming tools and software libraries. Because of this, it is becoming increasingly important to know what the parallel programming techniques are. Python is commonly used as even non-experts can easily deal with its concepts. This book will teach you parallel programming techniques using examples in Python and will help you explore the many ways in which you can write code that allows more than one process to happen at once. Starting with introducing you to the world of parallel computing, it moves on to cover the fundamentals in Python. This is followed by exploring the thread-based parallelism model using the Python threading module by synchronizing threads and using locks, mutex, semaphores queues, GIL, and the thread pool. Next you will be taught about process-based parallelism where you will synchronize processes using message passing along with learning about the performance of MPI Python Modules. You will then go on to learn the asynchronous parallel programming model using the Python asyncio module along with handling exceptions. Moving on, you will discover distributed computing with Python, and learn how to install a broker, use Celery Python Module, and create a worker. You will also understand the StarCluster framework, Pycsp, Scoop, and Disco modules in Python. Further on, you will learn GPU programming with Python using the PyCUDA module along with evaluating performance limitations. Next you will get acquainted with the cloud computing concepts in Python, using Google App Engine (GAE), and building your first application with GAE. Lastly, you will learn about grid computing concepts in Python and using PyGlobus toolkit, GFTP and GASS COPY to transfer files, and service monitoring in PyGlobus. Style and approach A step-by-step guide to parallel programming using Python, with recipes accompanied by one or more programming examples. It is a practically oriented book and has all the necessary underlying parallel computing concepts.

Topics in Parallel and Distributed Computing

Topics in Parallel and Distributed Computing
Author: Sushil K Prasad
Publisher: Morgan Kaufmann
Total Pages: 359
Release: 2015-09-16
Genre: Computers
ISBN: 0128039388

Topics in Parallel and Distributed Computing provides resources and guidance for those learning PDC as well as those teaching students new to the discipline. The pervasiveness of computing devices containing multicore CPUs and GPUs, including home and office PCs, laptops, and mobile devices, is making even common users dependent on parallel processing. Certainly, it is no longer sufficient for even basic programmers to acquire only the traditional sequential programming skills. The preceding trends point to the need for imparting a broad-based skill set in PDC technology. However, the rapid changes in computing hardware platforms and devices, languages, supporting programming environments, and research advances, poses a challenge both for newcomers and seasoned computer scientists. This edited collection has been developed over the past several years in conjunction with the IEEE technical committee on parallel processing (TCPP), which held several workshops and discussions on learning parallel computing and integrating parallel concepts into courses throughout computer science curricula. - Contributed and developed by the leading minds in parallel computing research and instruction - Provides resources and guidance for those learning PDC as well as those teaching students new to the discipline - Succinctly addresses a range of parallel and distributed computing topics - Pedagogically designed to ensure understanding by experienced engineers and newcomers - Developed over the past several years in conjunction with the IEEE technical committee on parallel processing (TCPP), which held several workshops and discussions on learning parallel computing and integrating parallel concepts

Distributed Programming

Distributed Programming
Author: A. Udaya Shankar
Publisher: Springer Science & Business Media
Total Pages: 389
Release: 2012-09-15
Genre: Computers
ISBN: 1461448816

Distributed Programming: Theory and Practice presents a practical and rigorous method to develop distributed programs that correctly implement their specifications. The method also covers how to write specifications and how to use them. Numerous examples such as bounded buffers, distributed locks, message-passing services, and distributed termination detection illustrate the method. Larger examples include data transfer protocols, distributed shared memory, and TCP network sockets. Distributed Programming: Theory and Practice bridges the gap between books that focus on specific concurrent programming languages and books that focus on distributed algorithms. Programs are written in a "real-life" programming notation, along the lines of Java and Python with explicit instantiation of threads and programs. Students and programmers will see these as programs and not "merely" algorithms in pseudo-code. The programs implement interesting algorithms and solve problems that are large enough to serve as projects in programming classes and software engineering classes. Exercises and examples are included at the end of each chapter with on-line access to the solutions. Distributed Programming: Theory and Practice is designed as an advanced-level text book for students in computer science and electrical engineering. Programmers, software engineers and researchers working in this field will also find this book useful.

Guide to Reliable Distributed Systems

Guide to Reliable Distributed Systems
Author: Amy Elser
Publisher: Springer Science & Business Media
Total Pages: 733
Release: 2012-01-15
Genre: Computers
ISBN: 1447124154

This book describes the key concepts, principles and implementation options for creating high-assurance cloud computing solutions. The guide starts with a broad technical overview and basic introduction to cloud computing, looking at the overall architecture of the cloud, client systems, the modern Internet and cloud computing data centers. It then delves into the core challenges of showing how reliability and fault-tolerance can be abstracted, how the resulting questions can be solved, and how the solutions can be leveraged to create a wide range of practical cloud applications. The author’s style is practical, and the guide should be readily understandable without any special background. Concrete examples are often drawn from real-world settings to illustrate key insights. Appendices show how the most important reliability models can be formalized, describe the API of the Isis2 platform, and offer more than 80 problems at varying levels of difficulty.

Introduction to Computation and Programming Using Python, second edition

Introduction to Computation and Programming Using Python, second edition
Author: John V. Guttag
Publisher: MIT Press
Total Pages: 466
Release: 2016-08-12
Genre: Computers
ISBN: 0262529629

The new edition of an introductory text that teaches students the art of computational problem solving, covering topics ranging from simple algorithms to information visualization. This book introduces students with little or no prior programming experience to the art of computational problem solving using Python and various Python libraries, including PyLab. It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of data science for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (MOOC). This new edition has been updated for Python 3, reorganized to make it easier to use for courses that cover only a subset of the material, and offers additional material including five new chapters. Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming. This edition offers expanded material on statistics and machine learning and new chapters on Frequentist and Bayesian statistics.

Distributed Algorithms

Distributed Algorithms
Author: Wan Fokkink
Publisher: MIT Press
Total Pages: 242
Release: 2013-12-06
Genre: Computers
ISBN: 0262026775

A comprehensive guide to distributed algorithms that emphasizes examples and exercises rather than mathematical argumentation.