Discovering Modern Set Theory. I: The Basics

Discovering Modern Set Theory. I: The Basics
Author: Winfried Just
Publisher: American Mathematical Soc.
Total Pages: 230
Release: 1996
Genre: Mathematics
ISBN: 0821802666

This book bridges the gap between the many elementary introductions to set theory that are available today and the more advanced, specialized monographs. The authors have taken great care to motivate concepts as they are introduced. The large number of exercises included make this book especially suitable for self-study. Students are guided towards their own discoveries in a lighthearted, yet rigorous manner.

Introduction to Modern Set Theory

Introduction to Modern Set Theory
Author: Judith Roitman
Publisher: John Wiley & Sons
Total Pages: 188
Release: 1990-01-16
Genre: Mathematics
ISBN: 9780471635192

This is modern set theory from the ground up--from partial orderings and well-ordered sets to models, infinite cobinatorics and large cardinals. The approach is unique, providing rigorous treatment of basic set-theoretic methods, while integrating advanced material such as independence results, throughout. The presentation incorporates much interesting historical material and no background in mathematical logic is assumed. Treatment is self-contained, featuring theorem proofs supported by diagrams, examples and exercises. Includes applications of set theory to other branches of mathematics.

Set Theory for the Working Mathematician

Set Theory for the Working Mathematician
Author: Krzysztof Ciesielski
Publisher: Cambridge University Press
Total Pages: 256
Release: 1997-08-28
Genre: Mathematics
ISBN: 9780521594653

Presents those methods of modern set theory most applicable to other areas of pure mathematics.

Set Theory

Set Theory
Author: Ralf Schindler
Publisher: Springer
Total Pages: 335
Release: 2014-05-22
Genre: Mathematics
ISBN: 3319067257

This textbook gives an introduction to axiomatic set theory and examines the prominent questions that are relevant in current research in a manner that is accessible to students. Its main theme is the interplay of large cardinals, inner models, forcing and descriptive set theory. The following topics are covered: • Forcing and constructability • The Solovay-Shelah Theorem i.e. the equiconsistency of ‘every set of reals is Lebesgue measurable’ with one inaccessible cardinal • Fine structure theory and a modern approach to sharps • Jensen’s Covering Lemma • The equivalence of analytic determinacy with sharps • The theory of extenders and iteration trees • A proof of projective determinacy from Woodin cardinals. Set Theory requires only a basic knowledge of mathematical logic and will be suitable for advanced students and researchers.

The Joy of Sets

The Joy of Sets
Author: Keith Devlin
Publisher: Springer Science & Business Media
Total Pages: 204
Release: 2012-12-06
Genre: Mathematics
ISBN: 146120903X

This text covers the parts of contemporary set theory relevant to other areas of pure mathematics. After a review of "naïve" set theory, it develops the Zermelo-Fraenkel axioms of the theory before discussing the ordinal and cardinal numbers. It then delves into contemporary set theory, covering such topics as the Borel hierarchy and Lebesgue measure. A final chapter presents an alternative conception of set theory useful in computer science.

A Book of Set Theory

A Book of Set Theory
Author: Charles C Pinter
Publisher: Courier Corporation
Total Pages: 259
Release: 2014-07-23
Genre: Mathematics
ISBN: 0486497089

"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--

Concepts of Modern Mathematics

Concepts of Modern Mathematics
Author: Ian Stewart
Publisher: Courier Corporation
Total Pages: 367
Release: 2012-05-23
Genre: Mathematics
ISBN: 0486134954

In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts of groups, sets, subsets, topology, Boolean algebra, and other mathematical subjects. 200 illustrations.

Problems and Theorems in Classical Set Theory

Problems and Theorems in Classical Set Theory
Author: Peter Komjath
Publisher: Springer Science & Business Media
Total Pages: 492
Release: 2006-11-22
Genre: Mathematics
ISBN: 0387362193

This volume contains a variety of problems from classical set theory and represents the first comprehensive collection of such problems. Many of these problems are also related to other fields of mathematics, including algebra, combinatorics, topology and real analysis. Rather than using drill exercises, most problems are challenging and require work, wit, and inspiration. They vary in difficulty, and are organized in such a way that earlier problems help in the solution of later ones. For many of the problems, the authors also trace the history of the problems and then provide proper reference at the end of the solution.

Combinatorial Set Theory

Combinatorial Set Theory
Author: Lorenz J. Halbeisen
Publisher: Springer
Total Pages: 586
Release: 2017-12-20
Genre: Mathematics
ISBN: 3319602314

This book, now in a thoroughly revised second edition, provides a comprehensive and accessible introduction to modern set theory. Following an overview of basic notions in combinatorics and first-order logic, the author outlines the main topics of classical set theory in the second part, including Ramsey theory and the axiom of choice. The revised edition contains new permutation models and recent results in set theory without the axiom of choice. The third part explains the sophisticated technique of forcing in great detail, now including a separate chapter on Suslin’s problem. The technique is used to show that certain statements are neither provable nor disprovable from the axioms of set theory. In the final part, some topics of classical set theory are revisited and further developed in light of forcing, with new chapters on Sacks Forcing and Shelah’s astonishing construction of a model with finitely many Ramsey ultrafilters. Written for graduate students in axiomatic set theory, Combinatorial Set Theory will appeal to all researchers interested in the foundations of mathematics. With extensive reference lists and historical remarks at the end of each chapter, this book is suitable for self-study.