Differential Systems and Isometric Embeddings.(AM-114), Volume 114

Differential Systems and Isometric Embeddings.(AM-114), Volume 114
Author: Phillip A. Griffiths
Publisher: Princeton University Press
Total Pages: 238
Release: 2016-03-02
Genre: Mathematics
ISBN: 1400882109

The theory of exterior differential systems provides a framework for systematically addressing the typically non-linear, and frequently overdetermined, partial differential equations that arise in differential geometry. Adaptation of the techniques of microlocalization to differential systems have led to recent activity on the foundations of the theory; in particular, the fundamental role of the characteristic variety in geometric problems is now clearly established. In this book the general theory is explained in a relatively quick and concrete manner, and then this general theory is applied to the recent developments in the classical problem of isometric embeddings of Riemannian manifolds.

Differential Systems and Isometric Embeddings

Differential Systems and Isometric Embeddings
Author: Phillip A. Griffiths
Publisher: Princeton University Press
Total Pages: 244
Release: 1987-05-21
Genre: Mathematics
ISBN: 9780691084305

The theory of exterior differential systems provides a framework for systematically addressing the typically non-linear, and frequently overdetermined, partial differential equations that arise in differential geometry. Adaptation of the techniques of microlocalization to differential systems have led to recent activity on the foundations of the theory; in particular, the fundamental role of the characteristic variety in geometric problems is now clearly established. In this book the general theory is explained in a relatively quick and concrete manner, and then this general theory is applied to the recent developments in the classical problem of isometric embeddings of Riemannian manifolds.

Exterior Differential Systems

Exterior Differential Systems
Author: Robert L. Bryant
Publisher: Springer Science & Business Media
Total Pages: 483
Release: 2013-06-29
Genre: Mathematics
ISBN: 1461397146

This book gives a treatment of exterior differential systems. It will in clude both the general theory and various applications. An exterior differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. When all the forms are linear, it is called a pfaffian system. Our object is to study its integral manifolds, i. e. , submanifolds satisfying all the equations of the system. A fundamental fact is that every equation implies the one obtained by exterior differentiation, so that the complete set of equations associated to an exterior differential system constitutes a differential ideal in the algebra of all smooth forms. Thus the theory is coordinate-free and computations typically have an algebraic character; however, even when coordinates are used in intermediate steps, the use of exterior algebra helps to efficiently guide the computations, and as a consequence the treatment adapts well to geometrical and physical problems. A system of partial differential equations, with any number of inde pendent and dependent variables and involving partial derivatives of any order, can be written as an exterior differential system. In this case we are interested in integral manifolds on which certain coordinates remain independent. The corresponding notion in exterior differential systems is the independence condition: certain pfaffian forms remain linearly indepen dent. Partial differential equations and exterior differential systems with an independence condition are essentially the same object.

The Method of Equivalence and Its Applications

The Method of Equivalence and Its Applications
Author: Robert B. Gardner
Publisher: SIAM
Total Pages: 134
Release: 1989-01-01
Genre: Mathematics
ISBN: 9781611970135

The ideas of Elie Cartan are combined with the tools of Felix Klein and Sophus Lie to present in this book the only detailed treatment of the method of equivalence. An algorithmic description of this method, which finds invariants of geometric objects under infinite dimensional pseudo-groups, is presented for the first time. As part of the algorithm, Gardner introduces several major new techniques. In particular, the use of Cartan's idea of principal components that appears in his theory of Repere Mobile, and the use of Lie algebras instead of Lie groups, effectively a linear procedure, provide a tremendous simplification. One must, however, know how to convert from one to the other, and the author provides the Rosetta stone to accomplish this. In complex problems, it is essential to be able to identify natural blocks in group actions and not just individual elements, and prior to this publication, there was no reference to block matrix techniques. The Method of Equivalence and Its Applications details ten diverse applications including Lagrangian field theory, control theory, ordinary differential equations, and Riemannian and conformal geometry. This volume contains a series of lectures, the purpose of which was to describe the equivalence algorithm and to show, in particular, how it is applied to several pedagogical examples and to a problem in control theory called state estimation of plants under feedback. The lectures, and hence the book, focus on problems in real geometry.

Selected Works of Phillip A. Griffiths with Commentary

Selected Works of Phillip A. Griffiths with Commentary
Author: Phillip Griffiths
Publisher: American Mathematical Soc.
Total Pages: 596
Release: 2003
Genre: Mathematics
ISBN: 9780821820889

Containing four parts such as Analytic Geometry, Algebraic Geometry, Variations of Hodge Structures, and Differential Systems that are organized according to the subject matter, this title provides the reader with a panoramic view of important and exciting mathematics during the second half of the 20th century.

The Selected Works of Phillip A. Griffiths with Commentary

The Selected Works of Phillip A. Griffiths with Commentary
Author: Phillip Griffiths
Publisher:
Total Pages: 824
Release: 2003
Genre: Mathematics
ISBN:

Over the last four decades, Phillip Griffiths has been a central figure in mathematics. During this time, he made crucial contributions in several fields, including complex analysis, algebraic geometry, and differential systems. His books and papers are distinguished by a remarkably lucid style that invites the reader to understand not only the subject at hand, but also the connections among seemingly unrelated areas of mathematics. Even today, many of Griffiths' papers are used as a standard source on a subject. Another important feature of Griffiths' writings is that they often bring together classical and modern mathematics. The four parts of Selected Works--Analytic Geometry, Algebraic Geometry, Variations of Hodge Structures, and Differential Systems--are organized according to the subject matter and are supplemented by Griffiths' brief, but extremely illuminating, personal reflections on the mathematical content and the times in which they were produced. Griffiths' Selected Works provide the reader with a panoramic view of important and exciting mathematics during the second half of the 20th century.

Isometric Embedding of Riemannian Manifolds in Euclidean Spaces

Isometric Embedding of Riemannian Manifolds in Euclidean Spaces
Author: Qing Han
Publisher: American Mathematical Soc.
Total Pages: 278
Release: 2006
Genre: Mathematics
ISBN: 0821840711

The question of the existence of isometric embeddings of Riemannian manifolds in Euclidean space is already more than a century old. This book presents, in a systematic way, results both local and global and in arbitrary dimension but with a focus on the isometric embedding of surfaces in ${\mathbb R}^3$. The emphasis is on those PDE techniques which are essential to the most important results of the last century. The classic results in this book include the Janet-Cartan Theorem, Nirenberg's solution of the Weyl problem, and Nash's Embedding Theorem, with a simplified proof by Gunther. The book also includes the main results from the past twenty years, both local and global, on the isometric embedding of surfaces in Euclidean 3-space. The work will be indispensable to researchers in the area. Moreover, the authors integrate the results and techniques into a unified whole, providing a good entry point into the area for advanced graduate students or anyone interested in this subject. The authors avoid what is technically complicated. Background knowledge is kept to an essential minimum: a one-semester course in differential geometry and a one-year course in partial differential equations.