Devices Theory
Download Devices Theory full books in PDF, epub, and Kindle. Read online free Devices Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : James Fiore |
Publisher | : |
Total Pages | : 407 |
Release | : 2017-05-11 |
Genre | : |
ISBN | : 9781796543537 |
Across 15 chapters, Semiconductor Devices covers the theory and application of discrete semiconductor devices including various types of diodes, bipolar junction transistors, JFETs, MOSFETs and IGBTs. Applications include rectifying, clipping, clamping, switching, small signal amplifiers and followers, and class A, B and D power amplifiers. Focusing on practical aspects of analysis and design, interpretations of device data sheets are integrated throughout the chapters. Computer simulations of circuit responses are included as well. Each chapter features a set of learning objectives, numerous sample problems, and a variety of exercises designed to hone and test circuit design and analysis skills. A companion laboratory manual is available. This is the print version of the on-line OER.
Author | : Karl Hess |
Publisher | : Wiley-IEEE Press |
Total Pages | : 360 |
Release | : 2000 |
Genre | : Technology & Engineering |
ISBN | : |
Electrical Engineering Advanced Theory of Semiconductor Devices Semiconductor devices are ubiquitous in today’s world and are found increasingly in cars, kitchens and electronic door locks, attesting to their presence in our daily lives. This comprehensive book provides the fundamentals of semiconductor device theory from basic quantum physics to computer-aided design. Advanced Theory of Semiconductor Devices will improve your understanding of computer simulation of devices through a thorough discussion of basic equations, their validity, and numerical solutions as they are contained in current simulation tools. You will gain state-of-the-art knowledge of devices used in both III–V compounds and silicon technology. Specially featured are novel approaches and explanations of electronic transport, particularly in p—n junction diodes. Close attention is also given to innovative treatments of quantum-well laser diodes and hot electron effects in silicon technology. This in-depth book is written for engineers, graduate students, and research scientists in solid-state electronics who want to gain a better understanding of the principles underlying semiconductor devices.
Author | : Ortwin Hess |
Publisher | : World Scientific |
Total Pages | : 182 |
Release | : 2011-09-23 |
Genre | : Science |
ISBN | : 1908978112 |
Quantum dot nano structures are interesting for applications in information technology and play a growing role in data storage, medical and biological applications. Understanding quantum nanomaterials is thus the key for the conception and optimization of novel structures.This monograph gives an overview of the theory and introduces the concepts of advanced computational modelling of quantum dot nanomaterials and devices ranging from phenomenological models up to fully quantum theoretical description./a
Author | : Boylestad |
Publisher | : Pearson Education India |
Total Pages | : 932 |
Release | : 2007 |
Genre | : Electronic apparatus and appliances |
ISBN | : 9788131703144 |
Author | : Rupam Goswami |
Publisher | : Springer Nature |
Total Pages | : 313 |
Release | : 2022-02-16 |
Genre | : Technology & Engineering |
ISBN | : 981169124X |
This book covers evolution, concept and applications of modern semiconductor devices such as tunnel field effect transistors (TFETs), vertical super-thin body MOSFETs, ion sensing FETs (ISFETs), non-conventional solar cells, opto-electro mechanical devices and thin film transistors (TFTs). Comprising of theory, experimentation and applications of devices, the chapters describe state-of-art methods and techniques which shall be highly assistive in having an overall perspective on emerging technologies and working on a research area. The book is aimed at the scholars, enthusiasts and researchers who are currently working on devices in the contemporary era of semiconductor devices. Additionally, the chapters are lucid and descriptive and carry the potential of serving as a reference book for scholars in their undergraduate studies, who are looking ahead for a prospective career in semiconductor devices.
Author | : Kevin F. Brennan |
Publisher | : Wiley-Interscience |
Total Pages | : 472 |
Release | : 2002-03-07 |
Genre | : Technology & Engineering |
ISBN | : |
A thorough examination of the present and future of semiconductor device technology Engineers continue to develop new electronic semiconductor devices that are almost exponentially smaller, faster, and more efficient than their immediate predecessors. Theory of Modern Electronic Semiconductor Devices endeavors to provide an up-to-date, extended discussion of the most important emerging devices and trends in semiconductor technology, setting the pace for the next generation of the discipline's literature. Kevin Brennan and April Brown focus on three increasingly important areas: telecommunications, quantum structures, and challenges and alternatives to CMOS technology. Specifically, the text examines the behavior of heterostructure devices for communications systems, quantum phenomena that appear in miniaturized structures and new nanoelectronic device types that exploit these effects, the challenges faced by continued miniaturization of CMOS devices, and futuristic alternatives. Device structures on the commercial and research levels analyzed in detail include: * Heterostructure field effect transistors * Bipolar and CMOS transistors * Resonant tunneling diodes * Real space transfer transistors * Quantum dot cellular automata * Single electron transistors The book contains many homework exercises at the end of each chapter, and a solution manual can be obtained for instructors. Emphasizing the development of new technology, Theory of Modern Electronic Semiconductor Devices is an ideal companion to electrical and computer engineering graduate level courses and an essential reference for semiconductor device engineers.
Author | : Yongke Sun |
Publisher | : Springer Science & Business Media |
Total Pages | : 353 |
Release | : 2009-11-14 |
Genre | : Technology & Engineering |
ISBN | : 1441905529 |
Strain Effect in Semiconductors: Theory and Device Applications presents the fundamentals and applications of strain in semiconductors and semiconductor devices that is relevant for strain-enhanced advanced CMOS technology and strain-based piezoresistive MEMS transducers. Discusses relevant applications of strain while also focusing on the fundamental physics pertaining to bulk, planar, and scaled nano-devices. Hence, this book is relevant for current strained Si logic technology as well as for understanding the physics and scaling for future strained nano-scale devices.
Author | : Vítezslav Benda |
Publisher | : John Wiley & Sons |
Total Pages | : 438 |
Release | : 1999-01-26 |
Genre | : Technology & Engineering |
ISBN | : 9780471976448 |
Dieses Buch beschreibt in leicht verständlicher Weise Aufbau, Funktion, Eigenschaften und Anwendungsmöglichkeiten wichtiger Halbleiter-Bauelemente - von Leistungsdioden über Thyristoren und MOSFETs bis hin zu integrierten Systemen. Die Autoren verzichten dabei auf komplizierte Mathematik; sie stützen sich vielmehr auf grundlegende physikalische Modelle. (11/98)
Author | : Vinod Kumar Khanna |
Publisher | : CRC Press |
Total Pages | : 911 |
Release | : 2020-07-21 |
Genre | : Science |
ISBN | : 1351204653 |
This introductory text develops the reader’s fundamental understanding of core principles and experimental aspects underlying the operation of nanoelectronic devices. The author makes a thorough and systematic presentation of electron transport in quantum-confined systems such as quantum dots, quantum wires, and quantum wells together with Landauer-Büttiker formalism and non-equilibrium Green’s function approach. The coverage encompasses nanofabrication techniques and characterization tools followed by a comprehensive exposition of nanoelectronic devices including resonant tunneling diodes, nanoscale MOSFETs, carbon nanotube FETs, high-electron-mobility transistors, single-electron transistors, and heterostructure optoelectronic devices. The writing throughout is simple and straightforward, with clearly drawn illustrations and extensive self-study exercises for each chapter. Introduces the basic concepts underlying the operation of nanoelectronic devices. Offers a broad overview of the field, including state-of-the-art developments. Covers the relevant quantum and solid-state physics and nanoelectronic device principles. Written in lucid language with accessible mathematical treatment. Includes extensive end-of-chapter exercises and many insightful diagrams.
Author | : Donald A. Neamen |
Publisher | : |
Total Pages | : 746 |
Release | : 2003 |
Genre | : Semiconductores |
ISBN | : 9780071198622 |
This text aims to provide the fundamentals necessary to understand semiconductor device characteristics, operations and limitations. Quantum mechanics and quantum theory are explored, and this background helps give students a deeper understanding of the essentials of physics and semiconductors.