Molecular Approaches in Plant Biology and Environmental Challenges

Molecular Approaches in Plant Biology and Environmental Challenges
Author: Sudhir P. Singh
Publisher: Springer Nature
Total Pages: 507
Release: 2019-10-01
Genre: Science
ISBN: 9811506906

This book discusses molecular approaches in plant as response to environmental factors, such as variations in temperature, water availability, salinity, and metal stress. The book also covers the impact of increasing global population, urbanization, and industrialization on these molecular behaviors. It covers the natural tolerance mechanism which plants adopt to cope with adverse environments, as well as the novel molecular strategies for engineering the plants in human interest. This book will be of interest to researchers working on the impact of the changing environment on plant ecology, issues of crop yield, and nutrient quantity and quality in agricultural crops. The book will be of interest to researchers as well as policy makers in the environmental and agricultural domains.

Molecular Aspects of Plant-Pathogen Interaction

Molecular Aspects of Plant-Pathogen Interaction
Author: Archana Singh
Publisher: Springer
Total Pages: 367
Release: 2018-02-15
Genre: Science
ISBN: 9811073716

The book offers an integrated overview of plant–pathogen interactions. It discusses all the steps in the pathway, from the microbe–host-cell interface and the plant’s recognition of the microbe to the plant’s defense response and biochemical alterations to achieve tolerance / resistance. It also sheds light on the classes of pathogens (bacteria, fungus and viruses); effector molecules, such as PAMPs; receptor molecules like PRRs and NBS-LRR proteins; signaling components like MAPKs; regulatory molecules, such as phytohormones and miRNA; transcription factors, such as WRKY; defense-related proteins such as PR-proteins; and defensive metabolites like secondary metabolites. In addition, it examines the role of post-genomics, high-throughput technology (transcriptomics and proteomics) in studying pathogen outbreaks causing crop losses in a number of plants. Providing a comprehensive picture of plant-pathogen interaction, the updated information included in this book is valuable for all those involved in crop improvement.

Compatible Solutes Engineering for Crop Plants Facing Climate Change

Compatible Solutes Engineering for Crop Plants Facing Climate Change
Author: Shabir Hussain Wani
Publisher: Springer Nature
Total Pages: 270
Release: 2021-10-30
Genre: Science
ISBN: 303080674X

Plants, being sessile and autotrophic in nature, must cope with challenging environmental aberrations and therefore have evolved various responsive or defensive mechanisms including stress sensing mechanisms, antioxidant system, signaling pathways, secondary metabolites biosynthesis, and other defensive pathways among which accumulation of osmolytes or osmo-protectants is an important phenomenon. Osmolytes with organic chemical nature termed as compatible solutes are highly soluble compounds with no net charge at physiological pH and nontoxic at higher concentrations to plant cells. Compatible solutes in plants involve compounds like proline, glycine betaine, polyamines, trehalose, raffinose family oligosaccharides, fructans, gamma aminobutyric acid (GABA), and sugar alcohols playing structural, physiological, biochemical, and signaling roles during normal plant growth and development. The current and sustaining problems of climate change and increasing world population has challenged global food security. To feed more than 9 billion, the estimated population by 2050, the yield of major crops needs to be increased 1.1–1.3% per year, which is mainly restricted by the yield ceiling. A major factor limiting the crop yield is the changing global environmental conditions which includes drought, salinity and extreme temperatures and are responsible for a reduction of crop yield in almost all the crop plants. This condition may worsen with a decrease in agricultural land or the loss of potential crop yields by 70%. Therefore, it is a challenging task for agricultural scientists to develop tolerant/resistant varieties against abiotic stresses. The development of stress tolerant plant varieties through conventional breeding is very slow due to complex multigene traits. Engineering compatible solutes biosynthesis by deciphering the mechanism behind the abiotic tolerance or accumulation in plants cell is a potential emerging strategy to mitigate adverse effects of abiotic stresses and increase global crop production. However, detailed information on compatible solutes, including their sensing/signaling, biosynthesis, regulatory components, underlying biochemical mechanisms, crosstalk with other signaling pathways, and transgenic development have not been compiled into a single resource. Our book intends to fill this unmet need, with insight from recent advances in compatible solutes research on agriculturally important crop plants.

Brassica Improvement

Brassica Improvement
Author: Shabir Hussain Wani
Publisher: Springer Nature
Total Pages: 261
Release: 2020-03-13
Genre: Technology & Engineering
ISBN: 3030346943

Global population is mounting at an alarming stride to surpass 9.3 billion by 2050, whereas simultaneously the agricultural productivity is gravely affected by climate changes resulting in increased biotic and abiotic stresses. The genus Brassica belongs to the mustard family whose members are known as cruciferous vegetables, cabbages or mustard plants. Rapeseed-mustard is world’s third most important source of edible oil after soybean and oil palm. It has worldwide acceptance owing to its rare combination of health promoting factors. It has very low levels of saturated fatty acids which make it the healthiest edible oil that is commonly available. Apart from this, it is rich in antioxidants by virtue of tocopherols and phytosterols presence in the oil. The high omega 3 content reduces the risk of atherosclerosis/heart attack. Conventional breeding methods have met with limited success in Brassica because yield and stress resilience are polygenic traits and are greatly influenced by environment. Therefore, it is imperative to accelerate the efforts to unravel the biochemical, physiological and molecular mechanisms underlying yield, quality and tolerance towards biotic and abiotic stresses in Brassica. To exploit its fullest potential, systematic efforts are needed to unlock the genetic information for new germplasms that tolerate initial and terminal state heat coupled with moisture stress. For instance, wild relatives may be exploited in developing introgressed and resynthesized lines with desirable attributes. Exploitation of heterosis is another important area which can be achieved by introducing transgenics to raise stable CMS lines. Doubled haploid breeding and marker assisted selection should be employed along with conventional breeding. Breeding programmes aim at enhancing resource use efficiency, especially nutrient and water as well as adoption to aberrant environmental changes should also be considered. Biotechnological interventions are essential for altering the biosynthetic pathways for developing high oleic and low linolenic lines. Accordingly, tools such as microspore and ovule culture, embryo rescue, isolation of trait specific genes especially for aphid, Sclerotinia and alternaria blight resistance, etc. along with identification of potential lines based on genetic diversity can assist ongoing breeding programmes. In this book, we highlight the recent molecular, genetic and genomic interventions made to achieve crop improvement in terms of yield increase, quality and stress tolerance in Brassica, with a special emphasis in Rapeseed-mustard.

Biotechnology and Production of Anti-Cancer Compounds

Biotechnology and Production of Anti-Cancer Compounds
Author: Sonia Malik
Publisher: Springer
Total Pages: 334
Release: 2017-04-21
Genre: Science
ISBN: 3319538802

This book discusses cancers and the resurgence of public interest in plant-based and herbal drugs. It also describes ways of obtaining anti-cancer drugs from plants and improving their production using biotechnological techniques. It presents methods such as cell culture, shoot and root culture, hairy root culture, purification of plant raw materials, genetic engineering, optimization of culture conditions as well as metabolic engineering with examples of successes like taxol, shikonin, ingenol mebutate and podophylotoxin. In addition, it describes the applications and limitations of large-scale production of anti-cancer compounds using biotechnological means. Lastly, it discusses future economical and eco-friendly strategies for obtaining anti-cancer compounds using biotechnology.

Disease Resistance in Crop Plants

Disease Resistance in Crop Plants
Author: Shabir Hussain Wani
Publisher: Springer
Total Pages: 314
Release: 2019-07-24
Genre: Science
ISBN: 3030207285

Human population is escalating at an enormous pace and is estimated to reach 9.7 billion by 2050. As a result, there will be an increase in demand for agricultural production by 60–110% between the years 2005 and 2050 at the global level; the number will be even more drastic in the developing world. Pathogens, animals, and weeds are altogether responsible for between 20 to 40 % of global agricultural productivity decrease. As such, managing disease development in plants continues to be a major strategy to ensure adequate food supply for the world. Accordingly, both the public and private sectors are moving to harness the tools and paradigms that promise resistance against pests and diseases. While the next generation of disease resistance research is progressing, maximum disease resistance traits are expected to be polygenic in nature and controlled by selective genes positioned at putative quantitative trait loci (QTLs). It has also been realized that sources of resistance are generally found in wild relatives or cultivars of lesser agronomic significance. However, introgression of disease resistance traits into commercial crop varieties typically involves many generations of backcrossing to transmit a promising genotype. Molecular marker-assisted breeding (MAB) has been found to facilitate the pre-selection of traits even prior to their expression. To date, researchers have utilized disease resistance genes (R-genes) in different crops including cereals, pulses, and oilseeds and other economically important plants, to improve productivity. Interestingly, comparison of different R genes that empower plants to resist an array of pathogens has led to the realization that the proteins encoded by these genes have numerous features in common. The above observation therefore suggests that plants may have co-evolved signal transduction pathways to adopt resistance against a wide range of divergent pathogens. A better understanding of the molecular mechanisms necessary for pathogen identification and a thorough dissection of the cellular responses to biotic stresses will certainly open new vistas for sustainable crop disease management. This book summarizes the recent advances in molecular and genetic techniques that have been successfully applied to impart disease resistance for plants and crops. It integrates the contributions from plant scientists targeting disease resistance mechanisms using molecular, genetic, and genomic approaches. This collection therefore serves as a reference source for scientists, academicians and post graduate students interested in or are actively engaged in dissecting disease resistance in plants using advanced genetic tools.

PLANT BREEDING: Classical to Modern

PLANT BREEDING: Classical to Modern
Author: P. M. Priyadarshan
Publisher: Springer Nature
Total Pages: 573
Release: 2019-11-09
Genre: Science
ISBN: 9811370958

This book offers a detailed overview of both conventional and modern approaches to plant breeding. In 25 chapters, it explores various aspects of conventional and modern means of plant breeding, including: history, objective, activities, centres of origin, plant introduction, reproduction, incompatibility, sterility, biometrics, selection, hybridization, methods of breeding both self- and cross- pollinated crops, heterosis, synthetic varieties, induced mutations and polyploidy, distant hybridization, quality breeding, ideotype breeding, resistance breeding, breeding for stress resistance, G x E interactions, tissue culture, genetic engineering, molecular breeding, genomics, gene action and varietal release. The book’s content addresses the needs of students worldwide. Modern methods like molecular breeding and genomics are dealt with extensively so as to provide a firm foundation and equip readers to read further advanced books. Each chapter discusses the respective subject as comprehensively as possible, and includes a section on further reading at the end. Info-boxes highlight the latest advances, and care has been taken to include nearly all topics required under the curricula of MS programs. As such, the book provides a much-needed reference guide for MS students around the globe.

The Lectins

The Lectins
Author: Irvin Liener
Publisher: Elsevier
Total Pages: 619
Release: 2012-12-02
Genre: Science
ISBN: 0323144446

The Lectins: Properties, Functions, and Applications in Biology and Medicine is a 10-chapter text that deals with the advances in research studies on the properties, functions, and applications of lectins in biology and medicine. The first two chapters consider the historical development, physicochemical properties, isolation, and remarkable specificity toward sugars of lectins. These topics are followed by a discussion on the molecular aspects of protein evolution, with a particular emphasis on lectins, which provide an excellent example of a family of homologous proteins. The following chapters explore the diverse biological activities of lectins and how these properties are utilized for the isolation and characterization of carbohydrate-containing compounds in solution and on cells. A chapter focuses on the functions of lectins in their natural milieu. This text further covers the importance of lectins in nonplant systems as exemplified by lectins that occur in vertebrates, slime molds, and bacteria. The last chapter highlights the nutritional significance of the occurrence of lectins in plant foods such as legumes. This book is an ideal source for organic chemists, protein researchers, and workers in the fields of biology and medicine.

Plant Growth Promoting Rhizobacteria for Sustainable Stress Management

Plant Growth Promoting Rhizobacteria for Sustainable Stress Management
Author: R. Z. Sayyed
Publisher: Springer Nature
Total Pages: 428
Release: 2019-10-11
Genre: Science
ISBN: 9811369860

Attaining sustainable agricultural production while preserving environmental quality, agro-ecosystem functions and biodiversity represents a major challenge for current agricultural practices; further, the traditional use of chemical inputs (fertilizers, pesticides, nutrients etc.) poses serious threats to crop productivity, soil fertility and the nutritional value of farm produce. Given these risks, managing pests and diseases, maintaining agro-ecosystem health, and avoiding health issues for humans and animals have now become key priorities. The use of PGPR as biofertilizers, plant growth promoters, biopesticides, and soil and plant health managers has attracted considerable attention among researchers, agriculturists, farmers, policymakers and consumers alike. Using PGPR as bioinoculants can help meet the expected demand for global agricultural productivity to feed the world’s booming population, which is predicted to reach roughly 9 billion by 2050. However, to provide effective bioinoculants, PGPR strains must be safe for the environment, offer considerable plant growth promotion and biocontrol potential, be compatible with useful soil rhizobacteria, and be able to withstand various biotic and abiotic stresses. Accordingly, the book also highlights the need for better strains of PGPR to complement increasing agro-productivity.

Biotechnologies for Plant Mutation Breeding

Biotechnologies for Plant Mutation Breeding
Author: Joanna Jankowicz-Cieslak
Publisher: Springer
Total Pages: 343
Release: 2016-12-08
Genre: Science
ISBN: 3319450212

This book is open access under a CC BY-NC 2.5 license. This book offers 19 detailed protocols on the use of induced mutations in crop breeding and functional genomics studies, which cover topics including chemical and physical mutagenesis, phenotypic screening methods, traditional TILLING and TILLING by sequencing, doubled haploidy, targeted genome editing, and low-cost methods for the molecular characterization of mutant plants that are suitable for laboratories in developing countries. The collection of protocols equips users with the techniques they need in order to start a program on mutation breeding or functional genomics using both forward and reverse-genetic approaches. Methods are provided for seed and vegetatively propagated crops (e.g. banana, barley, cassava, jatropha, rice) and can be adapted for use in other species.