Development Of A Shear Thinning Therapeutic Biomimetic Hydrogel For Minimally Invasive In Situ Cardiac Tissue Engineering
Download Development Of A Shear Thinning Therapeutic Biomimetic Hydrogel For Minimally Invasive In Situ Cardiac Tissue Engineering full books in PDF, epub, and Kindle. Read online free Development Of A Shear Thinning Therapeutic Biomimetic Hydrogel For Minimally Invasive In Situ Cardiac Tissue Engineering ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Brent Vernon |
Publisher | : Elsevier |
Total Pages | : 425 |
Release | : 2011-01-24 |
Genre | : Medical |
ISBN | : 0857091379 |
Novel injectable materials for non-invasive surgical procedures are becoming increasingly popular. An advantage of these materials include easy deliverability into the body, however the suitability of their mechanical properties must also be carefully considered. Injectable biomaterials covers the materials, properties and biomedical applications of injectable materials, as well as novel developments in the technology.Part one focuses on materials and properties, with chapters covering the design of injectable biomaterials as well as their rheological properties and the mechanical properties of injectable polymers and composites. Part two covers the clinical applications of injectable biomaterials, including chapters on drug delivery, tissue engineering and orthopaedic applications as well as injectable materials for gene delivery systems. In part three, existing and developing technologies are discussed. Chapters in this part cover such topics as environmentally responsive biomaterials, injectable nanotechnology, injectable biodegradable materials and biocompatibility. There are also chapters focusing on troubleshooting and potential future applications of injectable biomaterials.With its distinguished editor and international team of contributors, Injectable biomaterials is a standard reference for materials scientists and researchers working in the biomaterials industry, as well as those with an academic interest in the subject. It will also be beneficial to clinicians. - Comprehensively examines the materials, properties and biomedical applications of injectable materials, as well as novel developments in the technology - Reviews the design of injectable biomaterials as well as their rheological properties and the mechanical properties of injectable polymers and composites - Explores clinical applications of injectable biomaterials, including drug delivery, tissue engineering, orthopaedic applications and injectable materials for gene delivery systems
Author | : Namita Roy Choudhury |
Publisher | : Royal Society of Chemistry |
Total Pages | : 297 |
Release | : 2022-04-20 |
Genre | : Science |
ISBN | : 1839161027 |
Elastomeric proteins are ubiquitous in nature, where they have evolved precise structures and properties that are necessary to perform specific biological roles and functions. This book emphasizes the impact of amino acid sequence on modulating protein structure, properties, and function. Examples include conformational ensemble dynamics, environmental responsiveness, self-assembly, physico-mechanical properties, morphology, and properties tailored for biomedical applications. This foundational framework is not only critical to advance scientific understanding and knowledge on elastomeric proteins but also enables the conceptualization, rational design, and development of biosynthetic elastomers and their analogous polypeptides for a variety of applications. Edited and contributed by pioneering researchers in the field, the book provides a timely overview of the materials, along with the synthesis techniques, the unique characteristics of elastomeric proteins, and biomedical and industrial applications. The book will provide a reference for graduate students and researchers interested in designing biomimetic proteins tailored for various functions.
Author | : Ashutosh Tiwari |
Publisher | : John Wiley & Sons |
Total Pages | : 421 |
Release | : 2014-05-09 |
Genre | : Technology & Engineering |
ISBN | : 1118773683 |
Offers a comprehensive and interdisciplinary view of cutting-edge research on advanced materials for healthcare technology and applications Advanced healthcare materials are attracting strong interest in fundamental as well as applied medical science and technology. This book summarizes the current state of knowledge in the field of advanced materials for functional therapeutics, point-of-care diagnostics, translational materials, and up-and-coming bioengineering devices. Advanced Healthcare Materials highlights the key features that enable the design of stimuli-responsive smart nanoparticles, novel biomaterials, and nano/micro devices for either diagnosis or therapy, or both, called theranostics. It also presents the latest advancements in healthcare materials and medical technology. The senior researchers from global knowledge centers have written topics including: State-of-the-art of biomaterials for human health Micro- and nanoparticles and their application in biosensors The role of immunoassays Stimuli-responsive smart nanoparticles Diagnosis and treatment of cancer Advanced materials for biomedical application and drug delivery Nanoparticles for diagnosis and/or treatment of Alzheimers disease Hierarchical modelling of elastic behavior of human dental tissue Biodegradable porous hydrogels Hydrogels in tissue engineering, drug delivery, and wound care Modified natural zeolites Supramolecular hydrogels based on cyclodextrin poly(pseudo)rotaxane Polyhydroxyalkanoate-based biomaterials Biomimetic molecularly imprinted polymers
Author | : J. Miguel Oliveira |
Publisher | : Academic Press |
Total Pages | : 851 |
Release | : 2023-09-19 |
Genre | : Science |
ISBN | : 0128242256 |
Hydrogels for Tissue Engineering and Regenerative Medicine: From Fundaments to Applications provides the reader with a comprehensive, concise and thoroughly up-to-date resource on the different types of hydrogels in tissue engineering and regenerative medicine. The book is divided into three main sections that describe biological activities and the structural and physicochemical properties of hydrogels, along with a wide range of applications, including their combination with emerging technologies. Written by a diverse range of international academics for professionals, researchers, undergraduate and graduate students, this groundbreaking publication fills a gap in literature needed in the tissue engineering and regenerative medicine field. - Reviews the fundamentals and recent advances of hydrogels in tissue engineering and regenerative medicine applications - Presents state-of-the-art methodologies for the synthesis and processing of different types of hydrogels - Includes contributions by leading experts in engineering, the life sciences, microbiology and clinical medicine
Author | : Anwarul Hasan |
Publisher | : John Wiley & Sons |
Total Pages | : 762 |
Release | : 2017-06-19 |
Genre | : Science |
ISBN | : 3527338632 |
A comprehensive overview of the latest achievements, trends, and the current state of the art of this important and rapidly expanding field. Clearly and logically structured, the first part of the book explores the fundamentals of tissue engineering, providing a separate chapter on each of the basic topics, including biomaterials stem cells, biosensors and bioreactors. The second part then follows a more applied approach, discussing various applications of tissue engineering, such as the replacement or repairing of skins, cartilages, livers and blood vessels, to trachea, lungs and cardiac tissues, to musculoskeletal tissue engineering used for bones and ligaments as well as pancreas, kidney and neural tissue engineering for the brain. The book concludes with a look at future technological advances. An invaluable reading for entrants to the field in biomedical engineering as well as expert researchers and developers in industry.
Author | : Heung Jae Chun |
Publisher | : Springer |
Total Pages | : 533 |
Release | : 2018-10-24 |
Genre | : Medical |
ISBN | : 9811309477 |
This book explores in depth a wide range of new biomaterials that hold great promise for applications in regenerative medicine. The opening two sections are devoted to biomaterials designed to direct stem cell fate and regulate signaling pathways. Diverse novel functional biomaterials, including injectable nanocomposite hydrogels, electrosprayed nanoparticles, and waterborne polyurethane-based materials, are then discussed. The fourth section focuses on inorganic biomaterials, such as nanobioceramics, hydroxyapatite, and titanium dioxide. Finally, up-to-date information is provided on a wide range of smart natural biomaterials, ranging from silk fibroin-based scaffolds and collagen type I to chitosan, mussel-inspired biomaterials, and natural polymeric scaffolds. This is one of two books to be based on contributions from leading experts that were delivered at the 2018 Asia University Symposium on Biomedical Engineering in Seoul, Korea – the companion book examines in depth the latest enabling technologies for regenerative medicine.
Author | : Sougata Jana |
Publisher | : Springer Nature |
Total Pages | : 494 |
Release | : 2020-03-05 |
Genre | : Medical |
ISBN | : 9811502633 |
Thanks to their unique properties, chitosan and chitosan-based materials have numerous applications in the field of biomedicine, especially in drug delivery. This book examines biomedical applications of functional chitosan, exploring the various functions and applications in the development of chitosan-based biomaterials. It also describes the chemical structure of chitosan and discusses the relationship between their structure and functions, providing a theoretical basis for the design of biomaterials. Lastly, it reviews chemically modified and composite materials of chitin and chitosan derivatives for biomedical applications, such as tissue engineering, nanomedicine, drug delivery, and gene delivery.
Author | : Seyed Morteza Naghib |
Publisher | : Frontiers Media SA |
Total Pages | : 131 |
Release | : 2024-08-29 |
Genre | : Science |
ISBN | : 2832553982 |
Most drugs are toxic to cells that often kill healthy cells and establish several side effects. Conventional chemotherapy cargoes are not tumor-specific and commonly their nature leads to significant toxic effects on healthy tissues. Therefore, several drug delivery systems (DDSs) were developed to amend the therapeutic properties of drugs and made them safer and more effective. Local drug delivery which decreases systemic drug exposure, is an important approach for maximal efficacy, high levels of patient compliance, and fewer side effects. Smart drug delivery systems (SDDSs) have gained much attention and paved the way for more effective treatment of patients. SDDSs with stimuli-responsive characteristics are determined as the process that the payloads are not released before reaching the target site. This triggered release occurs due to the variations in the nano/microcarrier chemistry and structure, in response to endogenous and/or exogenous stimulus, establishing the release of the cargoes to the exact place. Responsive and smart materials/biomaterials are responsive/sensitive to signals originating from physiological systems, or to abnormalities originating from pathological defects, that can interact with or be triggered by the biological environments, and are interesting in drug delivery platforms/devices for developing next-generation accurate medicines. In exogenous-triggered delivery, drug/gene release is controlled by external stimulus, which can be controlled exactly. Different exogenous triggers have been reported, such as light, magnetic field, temperature, electrical field, and ultrasound. The endogenous triggers such as pH, redox, enzyme concentration, and bio-molecules are related to the disease's pathological characteristics. Disease pathological characteristics are key parameters as physiological triggers for designing programmed delivery devices that may be used for the non-invasive and effective treatment of a wide range of pathological conditions such as cancer, infections, diabetes, cardiovascular diseases, autoimmune disorders, stroke, and chronic wounds, and degenerative diseases. Endogenously triggered drug release is the same as exogenously triggered drug release, which can lead to enhanced release of therapeutic molecules at the target place in its therapeutic concentration, reducing local toxicity and side effects, reducing the need for repeat administrations, and increasing patient compliance. Here, we focused on smart endogenous and exogenous stimuli-responsive biomaterials for programmed drug delivery. The conventional drug delivery systems are not without any limitations and challenges. One of the most important challenges is related to their degradability or insufficient biocompatibility of most materials which are used in smart delivery system. Another challenge is related to the using of 2D in vitro models or in vivo animal studies to evaluate the performance of these systems, and there is a poor relation between such results and human clinical trials. Thus, these incompatibilities can lead to the failing of the numerous smart systems in clinical studies. In this special issue, we focus on smart multi-responsive drug delivery systems that can address some challenges and drawbacks. Research paper, commutation (letter), mini-review and review are acceptable for publications in this special issue. Main topics: 1- Smart exogenous-triggered delivery systems 2- Smart endogenous-triggered delivery systems 3- Multi-responsive targeted vehicles 4- Stimuli-responsive niosomes and liposomes 5- Multifunctional biomaterials for cancer treatment 6- Smart 3D and 4D scaffolds for localized delivery systems
Author | : Dr Helena S Azevedo |
Publisher | : Royal Society of Chemistry |
Total Pages | : 788 |
Release | : 2021-06-11 |
Genre | : Science |
ISBN | : 1788017579 |
Dynamic soft materials that have the ability to expand and contract, change stiffness, self-heal or dissolve in response to environmental changes, are of great interest in applications ranging from biosensing and drug delivery to soft robotics and tissue engineering. This book covers the state-of-the-art and current trends in the very active and exciting field of bioinspired soft matter, its fundamentals and comprehension from the structural-property point of view, as well as materials and cutting-edge technologies that enable their design, fabrication, advanced characterization and underpin their biomedical applications. The book contents are supported by illustrated examples, schemes, and figures, offering a comprehensive and thorough overview of key aspects of soft matter. The book will provide a trusted resource for undergraduate and graduate students and will extensively benefit researchers and professionals working across the fields of chemistry, biochemistry, polymer chemistry, materials science and engineering, nanosciences, nanotechnologies, nanomedicine, biomedical engineering and medical sciences.
Author | : Xian Jun Loh |
Publisher | : Royal Society of Chemistry |
Total Pages | : 198 |
Release | : 2018-09-27 |
Genre | : Science |
ISBN | : 1782629408 |
Biodegradable thermogels are a promising class of stimuli-responsive polymers. This book summarizes recent developments in thermogel research with a focus on synthesis and self-assembly mechanisms, gel biodegradability, and applications for drug delivery, cell encapsulation and tissue engineering. A closing chapter on commercialisation shows the challenges faced bringing this new material to market. Edited by leading authorities on the subject, this book offers a comprehensive overview for academics and professionals across polymer science, materials science and biomedical and chemical engineering.