Design of Wind and Earthquake Resistant Reinforced Concrete Buildings

Design of Wind and Earthquake Resistant Reinforced Concrete Buildings
Author: Somnath Ghosh
Publisher: CRC Press
Total Pages: 258
Release: 2021-06-14
Genre: Technology & Engineering
ISBN: 1000385663

Design of Wind and Earthquake Resistant Reinforced Concrete Buildings explains wind and seismic design issues of RCC buildings in brief and provides design examples based on recommendations of latest IS codes essential for industrial design. Intricate issues of RCC design are discussed which are supplemented by real-life examples. Guidelines are presented for evaluating the acceptability of wind-induced motions of tall buildings. Design methodologies for structures to deform well beyond their elastic limits, which is essential under seismic excitation, have been discussed in detail. Comparative discussion including typical design examples using recent British, Euro and American codes is also included. Features: Explains wind and earthquake resistant design issues, balancing theoretical aspects and design implications, in detail Discusses issues for designing the wind and earthquake resistant RCC structures Provides comprehensive understanding, analysis, design and detailing of the structures Includes a detailed discussion on IS code related to wind and earthquake resistant design and its comparison with Euro, British and American codes Contains architectural drawings and structural drawings The book is aimed at researchers, professionals, graduate students in wind and earthquake engineering, design of RCC structures, modelling and analysis of structures, civil/infrastructure engineering.

Wind and Earthquake Resistant Buildings

Wind and Earthquake Resistant Buildings
Author: Bungale S. Taranath
Publisher: CRC Press
Total Pages: 920
Release: 2004-12-15
Genre: Technology & Engineering
ISBN: 0849338093

Developed as a resource for practicing engineers, while simultaneously serving as a text in a formal classroom setting, Wind and Earthquake Resistant Buildings provides a fundmental understanding of the behavior of steel, concrete, and composite building structures. The text format follows, in a logical manner, the typical process of designing a bu

Seismic Design of Reinforced Concrete Buildings

Seismic Design of Reinforced Concrete Buildings
Author: Jack Moehle
Publisher: McGraw Hill Professional
Total Pages: 783
Release: 2014-10-06
Genre: Technology & Engineering
ISBN: 0071839453

Complete coverage of earthquake-resistant concrete building design Written by a renowned seismic engineering expert, this authoritative resource discusses the theory and practice for the design and evaluation of earthquakeresisting reinforced concrete buildings. The book addresses the behavior of reinforced concrete materials, components, and systems subjected to routine and extreme loads, with an emphasis on response to earthquake loading. Design methods, both at a basic level as required by current building codes and at an advanced level needed for special problems such as seismic performance assessment, are described. Data and models useful for analyzing reinforced concrete structures as well as numerous illustrations, tables, and equations are included in this detailed reference. Seismic Design of Reinforced Concrete Buildings covers: Seismic design and performance verification Steel reinforcement Concrete Confined concrete Axially loaded members Moment and axial force Shear in beams, columns, and walls Development and anchorage Beam-column connections Slab-column and slab-wall connections Seismic design overview Special moment frames Special structural walls Gravity framing Diaphragms and collectors Foundations

Vibration of Buildings to Wind and Earthquake Loads

Vibration of Buildings to Wind and Earthquake Loads
Author: T. Balendra
Publisher: Springer Science & Business Media
Total Pages: 156
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 1447120558

Recent advances in the development of high strength materials, coupled with more advanced computational methods and design procedures, have led to a new generation of tall and slender buildings. These structures are very sensitive to the most common dynamic loads; wind and earthquakes. The primary requirement for a successful design is to provide safety while taking into account serviceability requirements. This book provides a well-balanced and broad coverage of the information needed for the design of structural systems for wind- and earthquake-resistant buildings. It covers topics such as the basic concepts in structural dynamics and structural systems, the assessment of wind and earthquake loads acting on the system, the evaluation of the system response to such dynamic loads and the design for extreme loading. The text is generously illustrated and supported by numerical examples and will be of great interest to practising engineers and researchers in structural, civil and design engineering and also to architects. The author has drawn on his experience as a teacher, researcher and consultant.

Reinforced Concrete Design of Tall Buildings

Reinforced Concrete Design of Tall Buildings
Author: Bungale S. Taranath
Publisher: CRC Press
Total Pages: 1024
Release: 2009-12-14
Genre: Technology & Engineering
ISBN: 1439804818

An exploration of the world of concrete as it applies to the construction of buildings, Reinforced Concrete Design of Tall Buildings provides a practical perspective on all aspects of reinforced concrete used in the design of structures, with particular focus on tall and ultra-tall buildings. Written by Dr. Bungale S. Taranath, this work explains t

The Seismic Design Handbook

The Seismic Design Handbook
Author: Farzad Naeim
Publisher: Springer Science & Business Media
Total Pages: 816
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 1461516935

This handbook contains up-to-date existing structures, computer applications, and infonnation on planning, analysis, and design seismic design of wood structures. A new and very useful feature of this edition of earthquake-resistant building structures. Its intention is to provide engineers, architects, is the inclusion of a companion CD-ROM disc developers, and students of structural containing the complete digital version of the handbook itself and the following very engineering and architecture with authoritative, yet practical, design infonnation. It represents important publications: an attempt to bridge the persisting gap between l. UBC-IBC (1997-2000) Structural advances in the theories and concepts of Comparisons and Cross References, ICBO, earthquake-resistant design and their 2000. implementation in seismic design practice. 2. NEHRP Guidelines for the Seismic The distinguished panel of contributors is Rehabilitation of Buildings, FEMA-273, Federal Emergency Management Agency, composed of 22 experts from industry and universities, recognized for their knowledge and 1997. extensive practical experience in their fields. 3. NEHRP Commentary on the Guidelinesfor They have aimed to present clearly and the Seismic Rehabilitation of Buildings, FEMA-274, Federal Emergency concisely the basic principles and procedures pertinent to each subject and to illustrate with Management Agency, 1997. practical examples the application of these 4. NEHRP Recommended Provisions for principles and procedures in seismic design Seismic Regulations for New Buildings and practice. Where applicable, the provisions of Older Structures, Part 1 - Provisions, various seismic design standards such as mc FEMA-302, Federal Emergency 2000, UBC-97, FEMA-273/274 and ATC-40 Management Agency, 1997.

Seismic Design of Reinforced Concrete and Masonry Buildings

Seismic Design of Reinforced Concrete and Masonry Buildings
Author: Thomas Paulay
Publisher: Wiley-Interscience
Total Pages: 768
Release: 1992-04-10
Genre: Technology & Engineering
ISBN: 9780471549154

Emphasizes actual structural design, not analysis, of multistory buildings for seismic resistance. Strong emphasis is placed on specific detailing requirements for construction. Fundamental design principles are presented to create buildings that respond to a wide range of potential seismic forces, which are illustrated by numerous detailed examples. The discussion includes the design of reinforced concrete ductile frames, structural walls, dual systems, reinforced masonry structures, buildings with restricted ductility and foundation walls. In addition to the examples, full design calculations are given for three prototype structures.