Soil Steel Composite Bridges. An International Survey of Full Scale Tests and Comparison with the Pettersson-Sundquist Design Method

Soil Steel Composite Bridges. An International Survey of Full Scale Tests and Comparison with the Pettersson-Sundquist Design Method
Author: Alberto Moreo Mir
Publisher:
Total Pages:
Release: 2014
Genre:
ISBN:

Nowadays, many different efficient solutions are being studied to solve engineering problems. Inside this group of solutions we can find the Soil Steel Composite Bridges (SSCB) as an alternative to traditional bridges. SSCB are being used more often every day and they are showing themselves as competitive structures in terms of feasibility and constructability. This project was started to achieve two different goals. The first one was to create a general database of SSCB including few selected tests all around the world and the second one was to compare and discuss full scale tests using the Pettersson-Sundquist design method. To create the database and the following comparisons, twenty-five different full scale tests were used. From this tests all the necessary information was extracted and used to create the database. After creating the database, the project continued with the discussion and comparison of the full scale tests. Specifically those discussions and comparisons were related to the resistance of the soil (the soil modulus) used in the construction of the SSCB. All the values of the different soil modulus of each full scale test used in the comparisons were calculated using the Swedish Design Manual (SDM). Two different types of soil modulus were calculated in this project using SDM, ones are the soil modulus back calculated using the values reported from the live load tests performed on the culverts and the others are theoretical soil modulus calculated using the detailed information of the soil. The report continues with the explanation of the different conclusions ended up with during this project. It can be highlighted within this group of conclusions, the one related to the importance of reporting all the necessary information from the full scale tests including the soil parameters, the measures of the culvert, the cross sectional parameters and the vehicle dimensions among others. Another important conclusions are the effect of using the slabs over the top of the culvert and how it would effect to the sectional forces over the culvert and also the limitations using method B of the SDM regarding the type of soil used as backfilling Finally, the project finishes explaining some proposals for future research about other fields of the study of SSCB.

Soil-steel Bridges

Soil-steel Bridges
Author: George Abdel-Sayed
Publisher: McGraw-Hill Companies
Total Pages: 394
Release: 1994
Genre: Technology & Engineering
ISBN:

Very Good,No Highlights or Markup,all pages are intact.

Soil-Steel Bridges

Soil-Steel Bridges
Author: Damian Beben
Publisher: Springer Nature
Total Pages: 224
Release: 2020-03-04
Genre: Technology & Engineering
ISBN: 3030347885

The primary objective of this book is to provide designers with a set of analysis and design specifications for soil-steel bridges and culverts, also called flexible structures. Brief but informative, this guide is based on a quick look up approach to code applications, design and analysis methods/calculations as well as applications and solved examples. The book addresses the unique aspects of soil-steel bridges: design and analysis as well as examples of applications, numerical analysis and modeling techniques, corrosion and durability problems, service life and maintenance, and impact of moving loads.

Steel Bridges

Steel Bridges
Author: Manfred Hirt
Publisher: CRC Press
Total Pages: 556
Release: 2013-06-05
Genre: Science
ISBN: 1466572973

This English translation of the successful French edition presents the conception and design of steel and steel-concrete composite bridges, from simple beam bridges to cable supported structures. The book focuses primarily on road bridges, emphasizing the basis of their conception and the fundamentals that must be considered to assure structural sa

Steel-concrete Composite Bridges

Steel-concrete Composite Bridges
Author: David Collings
Publisher: Thomas Telford
Total Pages: 206
Release: 2005
Genre: Technology & Engineering
ISBN: 9780727733429

"Steel-concrete composite bridges shows how to choose the bridge form and design element sizes to enable the production of accurate drawings and also highlights a wide and full range of examples of the design and construction of this bridge type."--Jacket.

Finite Element Analysis and Design of Steel and Steel–Concrete Composite Bridges

Finite Element Analysis and Design of Steel and Steel–Concrete Composite Bridges
Author: Ehab Ellobody
Publisher: Butterworth-Heinemann
Total Pages: 683
Release: 2014-05-30
Genre: Technology & Engineering
ISBN: 0124173039

In recent years, bridge engineers and researchers are increasingly turning to the finite element method for the design of Steel and Steel-Concrete Composite Bridges. However, the complexity of the method has made the transition slow. Based on twenty years of experience, Finite Element Analysis and Design of Steel and Steel-Concrete Composite Bridges provides structural engineers and researchers with detailed modeling techniques for creating robust design models. The book’s seven chapters begin with an overview of the various forms of modern steel and steel–concrete composite bridges as well as current design codes. This is followed by self-contained chapters concerning: nonlinear material behavior of the bridge components, applied loads and stability of steel and steel–concrete composite bridges, and design of steel and steel–concrete composite bridge components. Constitutive models for construction materials including material non-linearity and geometric non-linearity The mechanical approach including problem setup, strain energy, external energy and potential energy), mathematics behind the method Commonly available finite elements codes for the design of steel bridges Explains how the design information from Finite Element Analysis is incorporated into Building information models to obtain quantity information, cost analysis

Finite Element Analysis and Design of Steel and Steel–Concrete Composite Bridges

Finite Element Analysis and Design of Steel and Steel–Concrete Composite Bridges
Author: Ehab Ellobody
Publisher: Elsevier
Total Pages: 722
Release: 2023-01-25
Genre: Technology & Engineering
ISBN: 044318996X

This second edition of Finite Element Analysis and Design of Steel and Steel-Concrete Composite Bridges is brought fully up-to-date and provides structural engineers, academics, practitioners, and researchers with a detailed, robust, and comprehensive combined finite modeling and design approach. The book’s eight chapters begin with an overview of the various forms of modern steel and steel-concrete composite bridges, current design codes (American, British, and Eurocodes), nonlinear material behavior of the bridge components, and applied loads and stability of steel and steel-concrete composite bridges. This is followed by self-contained chapters concerning design examples of steel and steel-concrete composite bridge components as well as finite element modeling of the bridges and their components. The final chapter focuses on finite element analysis and the design of composite highway bridges with profiled steel sheeting. This volume will serve as a valuable reference source addressing the issues, problems, challenges, and questions on how to enhance the design of steel and steel-concrete composite bridges, including highway bridges with profiled steel sheeting, using finite element modeling techniques. Provides all necessary information to understand relevant terminologies and finite element modeling for steel and composite bridges Discusses new designs and materials used in highway and railway bridge Illustrates how to relate the design guidelines and finite element modeling based on internal forces and nominal stresses Explains what should be the consistent approach when developing nonlinear finite element analysis for steel and composite bridges Contains extensive case studies on combining finite element analysis with design for steel and steel-concrete composite bridges, including highway bridges with profiled steel sheeting

Design of Steel-Concrete Composite Bridges to Eurocodes

Design of Steel-Concrete Composite Bridges to Eurocodes
Author: Ioannis Vayas
Publisher: CRC Press
Total Pages: 586
Release: 2013-08-29
Genre: Technology & Engineering
ISBN: 1466557443

Combining a theoretical background with engineering practice, Design of Steel-Concrete Composite Bridges to Eurocodes covers the conceptual and detailed design of composite bridges in accordance with the Eurocodes. Bridge design is strongly based on prescriptive normative rules regarding loads and their combinations, safety factors, material properties, analysis methods, required verifications, and other issues that are included in the codes. Composite bridges may be designed in accordance with the Eurocodes, which have recently been adopted across the European Union. This book centers on the new design rules incorporated in the EN-versions of the Eurocodes. The book addresses the design for a majority of composite bridge superstructures and guides readers through the selection of appropriate structural bridge systems. It introduces the loads on bridges and their combinations, proposes software supported analysis models, and outlines the required verifications for sections and members at ultimate and serviceability limit states, including fatigue and plate buckling, as well as seismic design of the deck and the bearings. It presents the main types of common composite bridges, discusses structural forms and systems, and describes preliminary design aids and erection methods. It provides information on railway bridges, but through the design examples makes road bridges the focal point. This text includes several design examples within the chapters, explores the structural details, summarizes the relevant design codes, discusses durability issues, presents the properties for structural materials, concentrates on modeling for global analysis, and lays down the rules for the shear connection. It presents fatigue analysis and design, fatigue load models, detail categories, and fatigue verifications for structural steel, reinforcement, concrete, and shear connectors. It also covers structural bearings and dampers, with an emphasis on reinforced elastomeric bearings. The book is appropriate for structural engineering students, bridge designers or practicing engineers converting from other codes to Eurocodes.