Design of Rotating Electrical Machines

Design of Rotating Electrical Machines
Author: Juha Pyrhonen
Publisher: John Wiley & Sons
Total Pages: 612
Release: 2013-09-26
Genre: Technology & Engineering
ISBN: 1118701658

In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This timely new edition offers up-to-date theory and guidelines for the design of electrical machines, taking into account recent advances in permanent magnet machines as well as synchronous reluctance machines. New coverage includes: Brand new material on the ecological impact of the motors, covering the eco-design principles of rotating electrical machines An expanded section on the design of permanent magnet synchronous machines, now reporting on the design of tooth-coil, high-torque permanent magnet machines and their properties Large updates and new material on synchronous reluctance machines, air-gap inductance, losses in and resistivity of permanent magnets (PM), operating point of loaded PM circuit, PM machine design, and minimizing the losses in electrical machines> End-of-chapter exercises and new direct design examples with methods and solutions to real design problems> A supplementary website hosts two machine design examples created with MATHCAD: rotor surface magnet permanent magnet machine and squirrel cage induction machine calculations. Also a MATLAB code for optimizing the design of an induction motor is provided Outlining a step-by-step sequence of machine design, this book enables electrical machine designers to design rotating electrical machines. With a thorough treatment of all existing and emerging technologies in the field, it is a useful manual for professionals working in the diagnosis of electrical machines and drives. A rigorous introduction to the theoretical principles and techniques makes the book invaluable to senior electrical engineering students, postgraduates, researchers and university lecturers involved in electrical drives technology and electromechanical energy conversion.

Analysis of Electric Machinery and Drive Systems

Analysis of Electric Machinery and Drive Systems
Author: Paul C. Krause
Publisher: John Wiley & Sons
Total Pages: 693
Release: 2013-06-17
Genre: Technology & Engineering
ISBN: 111802429X

Introducing a new edition of the popular reference on machine analysis Now in a fully revised and expanded edition, this widely used reference on machine analysis boasts many changes designed to address the varied needs of engineers in the electric machinery, electric drives, and electric power industries. The authors draw on their own extensive research efforts, bringing all topics up to date and outlining a variety of new approaches they have developed over the past decade. Focusing on reference frame theory that has been at the core of this work since the first edition, this volume goes a step further, introducing new material relevant to machine design along with numerous techniques for making the derivation of equations more direct and easy to use. Coverage includes: Completely new chapters on winding functions and machine design that add a significant dimension not found in any other text A new formulation of machine equations for improving analysis and modeling of machines coupled to power electronic circuits Simplified techniques throughout, from the derivation of torque equations and synchronous machine analysis to the analysis of unbalanced operation A unique generalized approach to machine parameters identification A first-rate resource for engineers wishing to master cutting-edge techniques for machine analysis, Analysis of Electric Machinery and Drive Systems is also a highly useful guide for students in the field.

Electrical Drives for Direct Drive Renewable Energy Systems

Electrical Drives for Direct Drive Renewable Energy Systems
Author: Markus Mueller
Publisher: Elsevier
Total Pages: 280
Release: 2013-03-25
Genre: Technology & Engineering
ISBN: 0857097490

Wind turbine gearboxes present major reliability issues, leading to great interest in the current development of gearless direct-drive wind energy systems. Offering high reliability, high efficiency and low maintenance, developments in these direct-drive systems point the way to the next generation of wind power, and Electrical drives for direct drive renewable energy systems is an authoritative guide to their design, development and operation.Part one outlines electrical drive technology, beginning with an overview of electrical generators for direct drive systems. Principles of electrical design for permanent magnet generators are discussed, followed by electrical, thermal and structural generator design and systems integration. A review of power electronic converter technology and power electronic converter systems for direct drive renewable energy applications is then conducted. Part two then focuses on wind and marine applications, beginning with a commercial overview of wind turbine drive systems and an introduction to direct drive wave energy conversion systems. The commercial application of these technologies is investigated via case studies on the permanent magnet direct drive generator in the Zephyros wind turbine, and the Archimedes Wave Swing (AWS) direct drive wave energy pilot plant. Finally, the book concludes by exploring the application of high-temperature superconducting machines to direct drive renewable energy systems.With its distinguished editors and international team of expert contributors, Electrical drives for direct drive renewable energy systems provides a comprehensive review of key technologies for anyone involved with or interested in the design, construction, operation, development and optimisation of direct drive wind and marine energy systems. - An authorative guide to the design, development and operation of gearless direct drives - Discusses the principles of electrical design for permanent magnet generators and electrical, thermal and structural generator design and systems integration - Investigates the commercial applications of wind turbine drive systems

Entrepreneurship in Power Semiconductor Devices, Power Electronics, and Electric Machines and Drive Systems

Entrepreneurship in Power Semiconductor Devices, Power Electronics, and Electric Machines and Drive Systems
Author: Krishnan Ramu
Publisher: CRC Press
Total Pages: 335
Release: 2020-12-07
Genre: Technology & Engineering
ISBN: 1000287866

Entrepreneurship in Power Semiconductor Devices, Power Electronics, and Electric Machines and Drive Systems introduces the basics of entrepreneurship and a methodology for the study of entrepreneurship in electrical engineering and other engineering fields. Entrepreneurship is considered here in three fields of electrical engineering, viz. power semiconductor devices, power electronics and electric machines and drive systems, and their current practice. It prepares the reader by providing a review of the subject matter in the three fields, their current status in research and development with analysis aspect as needed, thus allowing readers to gain self-sufficiency while reading the book. Each field’s emerging applications, current market and future market forecasts are introduced to understand the basis and need for emerging startups. Practical learning is introduced in: (i) power semiconductor devices entrepreneurship through the prism of 20 startups in detail, (ii) power electronics entrepreneurship through 28 startup companies arranged under various application fields and (iii) electric machines and drive systems entrepreneurship through 15 startups in electromagnetic and 1 in electrostatic machines and drive systems. The book: (i) demystifies entrepreneurship in a practical way to equip engineers and students with entrepreneurship as an option for their professional growth, pursuit and success; (ii) provides engineering managers and corporate-level executives a detailed view of entrepreneurship activities in the considered three fields that may potentially impact their businesses, (iii) provides entrepreneurship education in an electrical engineering environment and with direct connection and correlation to their fields of study and (iv) endows a methodology that can be effectively employed not only in the three illustrated fields of electrical engineering but in other fields as well. This book is for electrical engineering students and professionals. For use in undergraduate and graduate courses in electrical engineering, the book contains discussion questions, exercise problems, team and class projects, all from a practical point of view, to train students and assist professionals for future entrepreneurship endeavors.

Modern Permanent Magnet Electric Machines

Modern Permanent Magnet Electric Machines
Author: Jacek F. Gieras
Publisher: CRC Press
Total Pages: 308
Release: 2022-12-05
Genre: Technology & Engineering
ISBN: 1000777006

The late 1980s saw the beginning of the PM brushless machine era, with the invention of high-energy density permanent magnets (PM) and the development of power electronics. Although induction motors are now the most popular electric motors, the impact of PM brushless machines on electromechanical drives is significant. Today, PM machines come second to induction machines. Replacement of electromagnetic field excitation systems by PMs brings the following benefits: No electrical energy is absorbed by the field excitation system and thus there are no excitation losses, causing substantial increase in efficiency Higher power density (kW/kg) and/or torque density (Nm/kg) than electromagnetic excitation Better dynamic performance than motors with electromagnetic excitation (higher magnetic flux density in the air gap) Simplification of construction and maintenance Less expensive for some types of machines Modern Permanent Magnet Electric Machines: Theory and Control serves as a textbook for undergraduate power engineering students who want to supplement and expand their knowledge in the fundamentals of magnetism, soft magnetic materials, permanent magnets (PMs), calculation of magnetic circuits with PMs, modern PM brushed DC machines and their controls, modern PM brushless DC motors and drive control, and modern PM generators. The book can help students learn more about electrical machines and can serve as a prescribed text for teaching elective undergraduate courses such as modern permanent magnet electrical machines. Since the book is written in a simple scientific language and without redundant mathematics, it can also be used by practicing engineers and managers employed in electrical machinery or electromagnetic device industries.

Steam Engineering

Steam Engineering
Author: William Richard King
Publisher:
Total Pages: 488
Release: 1913
Genre: Steam engineering
ISBN: