Design And Synthesis Of 3 D Fragments And 3 D Building Blocks For Fragment Elaboration
Download Design And Synthesis Of 3 D Fragments And 3 D Building Blocks For Fragment Elaboration full books in PDF, epub, and Kindle. Read online free Design And Synthesis Of 3 D Fragments And 3 D Building Blocks For Fragment Elaboration ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Andrea Basso |
Publisher | : Frontiers Media SA |
Total Pages | : 150 |
Release | : 2019-03-22 |
Genre | : |
ISBN | : 2889457885 |
Has the concept of Diversity Oriented Synthesis remained unchanged over these two decades, or do we observe improvements or deviations from the original guidelines drawn by the pioneers? The aim of this Research Topic is to collect contributions on the state-of-the-art and progress of Diversity Oriented Synthesis, and to foresee its shape in the next decade.
Author | : Steven Howard |
Publisher | : Royal Society of Chemistry |
Total Pages | : 314 |
Release | : 2015-06-17 |
Genre | : Medical |
ISBN | : 1782625658 |
Fragment-based drug discovery is a rapidly evolving area of research, which has recently seen new applications in areas such as epigenetics, GPCRs and the identification of novel allosteric binding pockets. The first fragment-derived drug was recently approved for the treatment of melanoma. It is hoped that this approval is just the beginning of the many drugs yet to be discovered using this fascinating technique. This book is written from a Chemist's perspective and comprehensively assesses the impact of fragment-based drug discovery on a wide variety of areas of medicinal chemistry. It will prove to be an invaluable resource for medicinal chemists working in academia and industry, as well as anyone interested in novel drug discovery techniques.
Author | : Gisbert Schneider |
Publisher | : John Wiley & Sons |
Total Pages | : 540 |
Release | : 2013-10-10 |
Genre | : Medical |
ISBN | : 3527677038 |
Systematically examining current methods and strategies, this ready reference covers a wide range of molecular structures, from organic-chemical drugs to peptides, Proteins and nucleic acids, in line with emerging new drug classes derived from biomacromolecules. A leader in the field and one of the pioneers of this young discipline has assembled here the most prominent experts from across the world to provide first-hand knowledge. While most of their methods and examples come from the area of pharmaceutical discovery and development, the approaches are equally applicable for chemical probes and diagnostics, pesticides, and any other molecule designed to interact with a biological system. Numerous images and screenshots illustrate the many examples and method descriptions. With its broad and balanced coverage, this will be the firststop resource not only for medicinal chemists, biochemists and biotechnologists, but equally for bioinformaticians and molecular designers for many years to come. From the content: * Reaction-driven de novo design * Adaptive methods in molecular design * Design of ligands against multitarget profiles * Free energy methods in ligand design * Fragment-based de novo design * Automated design of focused and target family-oriented compound libraries * Molecular de novo design by nature-inspired computing * 3D QSAR approaches to de novo drug design * Bioisosteres in de novo design * De novo design of peptides, proteins and nucleic acid structures, including RNA aptamers and many more.
Author | : Andrea Trabocchi |
Publisher | : John Wiley & Sons |
Total Pages | : 550 |
Release | : 2013-06-17 |
Genre | : Science |
ISBN | : 1118618149 |
Discover an enhanced synthetic approach to developing and screening chemical compound libraries Diversity-oriented synthesis is a new paradigm for developing large collections of structurally diverse small molecules as probes to investigate biological pathways. This book presents the most effective methods in diversity-oriented synthesis for creating small molecule collections. It offers tested and proven strategies for developing diversity-oriented synthetic libraries and screening methods for identifying ligands. Lastly, it explores some promising new applications based on diversity-oriented synthesis that have the potential to dramatically advance studies in drug discovery and chemical biology. Diversity-Oriented Synthesis begins with an introductory chapter that explores the basics, including a discussion of the relationship between diversity-oriented synthesis and classic combinatorial chemistry. Divided into four parts, the book: Offers key chemical methods for the generation of small molecules using diversity-oriented principles, including peptidomimetics and macrocycles Expands on the concept of diversity-oriented synthesis by describing chemical libraries Provides modern approaches to screening diversity-oriented synthetic libraries, including high-throughput and high-content screening, small molecule microarrays, and smart screening assays Presents the applications of diversity-oriented synthetic libraries and small molecules in drug discovery and chemical biology, reporting the results of key studies and forecasting the role of diversity-oriented synthesis in future biomedical research This book has been written and edited by leading international experts in organic synthesis and its applications. Their contributions are based on a thorough review of the current literature as well as their own firsthand experience developing synthetic methods and applications. Clearly written and extensively referenced, Diversity-Oriented Synthesis introduces novices to this highly promising field of research and serves as a springboard for experts to advance their own research studies and develop new applications.
Author | : Pandi Veerapandian |
Publisher | : Routledge |
Total Pages | : 665 |
Release | : 2018-03-29 |
Genre | : Medical |
ISBN | : 1351413066 |
Introducing the most recent advances in crystallography, nuclear magnetic resonance, molecular modeling techniques, and computational combinatorial chemistry, this unique, interdisciplinary reference explains the application of three-dimensional structural information in the design of pharmaceutical drugs. Furnishing authoritative analyses by world-renowned experts, Structure-Based Drug Design discusses protein structure-based design in optimizing HIV protease inhibitors and details the biochemical, genetic, and clinical data on HIV-1 reverse transcriptase presents recent results on the high-resolution three-dimensional structure of the catalytic core domain of HIV-1 integrase as a foundation for divergent combination therapy focuses on structure-based design strategies for uncovering receptor antagonists to treat inflammatory diseases demonstrates a systematic approach to the design of inhibitory compounds in cancer treatment reviews current knowledge on the Interleukin-1 (IL-1) system and progress in the development of IL-1 modulators describes the influence of structure-based methods in designing capsid-binding inhibitors for relief of the common cold and much more!
Author | : Lisa C. du Toit |
Publisher | : Elsevier |
Total Pages | : 318 |
Release | : 2020-03-08 |
Genre | : Technology & Engineering |
ISBN | : 0128184728 |
Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering explores the intricacies of nanostructures and 3D printed systems in terms of their design as drug delivery or tissue engineering devices, their further evaluations and diverse applications. The book highlights the most recent advances in both nanosystems and 3D-printed systems for both drug delivery and tissue engineering applications. It discusses the convergence of biofabrication with nanotechnology, constructing a directional customizable biomaterial arrangement for promoting tissue regeneration, combined with the potential for controlled bioactive delivery. These discussions provide a new viewpoint for both biomaterials scientists and pharmaceutical scientists. - Shows how nanotechnology and 3D printing are being used to create systems which are intelligent, biomimetic and customizable to the patient - Explores the current generation of nanostructured 3D printed medical devices - Assesses the major challenges of using 3D printed nanosystems for the manufacture of new pharmaceuticals
Author | : Paul M. Dewick |
Publisher | : John Wiley & Sons |
Total Pages | : 524 |
Release | : 2002-01-03 |
Genre | : Law |
ISBN | : 9780471496410 |
This guide covers classes of natural products in medicine, whether derived from plants, micro-organisms or animals. Structured according to biosynthetic pathway, it is written from a chemistry-based approach.
Author | : Daniel A. Erlanson |
Publisher | : John Wiley & Sons |
Total Pages | : 524 |
Release | : 2016-02-23 |
Genre | : Medical |
ISBN | : 352733775X |
From its origins as a niche technique more than 15 years ago, fragment-based approaches have become a major tool for drug and ligand discovery, often yielding results where other methods have failed. Written by the pioneers in the field, this book provides a comprehensive overview of current methods and applications of fragment-based discovery, as well as an outlook on where the field is headed. The first part discusses basic considerations of when to use fragment-based methods, how to select targets, and how to build libraries in the chemical fragment space. The second part describes established, novel and emerging methods for fragment screening, including empirical as well as computational approaches. Special cases of fragment-based screening, e. g. for complex target systems and for covalent inhibitors are also discussed. The third part presents several case studies from recent and on-going drug discovery projects for a variety of target classes, from kinases and phosphatases to targeting protein-protein interaction and epigenetic targets.
Author | : Robert E. Babine |
Publisher | : John Wiley & Sons |
Total Pages | : 284 |
Release | : 2004-02-13 |
Genre | : Medical |
ISBN | : 9783527306787 |
The rational, structure-based approach has become standard in present-day drug design. As a consequence, the availability of high-resolution structures of target proteins is more often than not the basis for an entire drug development program. Protein structures suited for rational drug design are almost exclusively derived from crystallographic studies, and drug developers are relying heavily on the power of this method. Here, researchers from leading pharmaceutical companies present valuable first-hand information, much of it published for the first time. They discuss strategies to derive high-resolution structures for such important target protein classes as kinases or proteases, as well as selected examples of successful protein crystallographic studies. A special section on recent methodological developments, such as for high-throughput crystallography and microcrystallization, is also included. A valuable companion for crystallographers involved in protein structure determination as well as drug developers pursuing the structure-based approach for use in their daily work.
Author | : Thomas Nogrady |
Publisher | : Oxford University Press |
Total Pages | : 664 |
Release | : 2005-08-11 |
Genre | : Medical |
ISBN | : 0190282967 |
Fully updated and rewritten by a basic scientist who is also a practicing physician, the third edition of this popular textbook remains comprehensive, authoritative and readable. Taking a receptor-based, target-centered approach, it presents the concepts central to the study of drug action in a logical, mechanistic way grounded on molecular and principles. Students of pharmacy, chemistry and pharmacology, as well as researchers interested in a better understanding of drug design, will find this book an invaluable resource. Starting with an overview of basic principles, Medicinal Chemistry examines the properties of drug molecules, the characteristics of drug receptors, and the nature of drug-receptor interactions. Then it systematically examines the various families of receptors involved in human disease and drug design. The first three classes of receptors are related to endogenous molecules: neurotransmitters, hormones and immunomodulators. Next, receptors associated with cellular organelles (mitochondria, cell nucleus), endogenous macromolecules (membrane proteins, cytoplasmic enzymes) and pathogens (viruses, bacteria) are examined. Through this evaluation of receptors, all the main types of human disease and all major categories of drugs are considered. There have been many changes in the third edition, including a new chapter on the immune system. Because of their increasingly prominent role in drug discovery, molecular modeling techniques, high throughput screening, neuropharmacology and genetics/genomics are given much more attention. The chapter on hormonal therapies has been thoroughly updated and re-organized. Emerging enzyme targets in drug design (e.g. kinases, caspases) are discussed, and recent information on voltage-gated and ligand-gated ion channels has been incorporated. The sections on antihypertensive, antiviral, antibacterial, anti-inflammatory, antiarrhythmic, and anticancer drugs, as well as treatments for hyperlipidemia and peptic ulcer, have been substantially expanded. One new feature will enhance the book's appeal to all readers: clinical-molecular interface sections that facilitate understanding of the treatment of human disease at a molecular level.