High k Gate Dielectrics

High k Gate Dielectrics
Author: Michel Houssa
Publisher: CRC Press
Total Pages: 500
Release: 2003-12-01
Genre: Science
ISBN: 1000687244

The drive toward smaller and smaller electronic componentry has huge implications for the materials currently being used. As quantum mechanical effects begin to dominate, conventional materials will be unable to function at scales much smaller than those in current use. For this reason, new materials with higher electrical permittivity will be requ

Defects in HIgh-k Gate Dielectric Stacks

Defects in HIgh-k Gate Dielectric Stacks
Author: Evgeni Gusev
Publisher: Springer Science & Business Media
Total Pages: 495
Release: 2006-02-15
Genre: Technology & Engineering
ISBN: 1402043678

The goal of this NATO Advanced Research Workshop (ARW) entitled “Defects in Advanced High-k Dielectric Nano-electronic Semiconductor Devices”, which was held in St. Petersburg, Russia, from July 11 to 14, 2005, was to examine the very complex scientific issues that pertain to the use of advanced high dielectric constant (high-k) materials in next generation semiconductor devices. The special feature of this workshop was focus on an important issue of defects in this novel class of materials. One of the key obstacles to high-k integration into Si nano-technology are the electronic defects in high-k materials. It has been established that defects do exist in high-k dielectrics and they play an important role in device operation. However, very little is known about the nature of the defects or about possible techniques to eliminate, or at least minimize them. Given the absence of a feasible alternative in the near future, well-focused scientific research and aggressive development programs on high-k gate dielectrics and related devices must continue for semiconductor electronics to remain a competitive income producing force in the global market.

Atomic Layer Deposition for Semiconductors

Atomic Layer Deposition for Semiconductors
Author: Cheol Seong Hwang
Publisher: Springer Science & Business Media
Total Pages: 266
Release: 2013-10-18
Genre: Science
ISBN: 146148054X

Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.

CVD XV

CVD XV
Author: Mark Donald Allendorf
Publisher: The Electrochemical Society
Total Pages: 826
Release: 2000
Genre: Technology & Engineering
ISBN: 9781566772785

Transparent Oxide Electronics

Transparent Oxide Electronics
Author: Pedro Barquinha
Publisher: John Wiley & Sons
Total Pages: 348
Release: 2012-03-15
Genre: Technology & Engineering
ISBN: 1119967740

Transparent electronics is emerging as one of the most promising technologies for the next generation of electronic products, away from the traditional silicon technology. It is essential for touch display panels, solar cells, LEDs and antistatic coatings. The book describes the concept of transparent electronics, passive and active oxide semiconductors, multicomponent dielectrics and their importance for a new era of novel electronic materials and products. This is followed by a short history of transistors, and how oxides have revolutionized this field. It concludes with a glance at low-cost, disposable and lightweight devices for the next generation of ergonomic and functional discrete devices. Chapters cover: Properties and applications of n-type oxide semiconductors P-type conductors and semiconductors, including copper oxide and tin monoxide Low-temperature processed dielectrics n and p-type thin film transistors (TFTs) – structure, physics and brief history Paper electronics – Paper transistors, paper memories and paper batteries Applications of oxide TFTs – transparent circuits, active matrices for displays and biosensors Written by a team of renowned world experts, Transparent Oxide Electronics: From Materials to Devices gives an overview of the world of transparent electronics, and showcases groundbreaking work on paper transistors