Density of Prime Divisors of Linear Recurrences

Density of Prime Divisors of Linear Recurrences
Author: Christian Ballot
Publisher: American Mathematical Soc.
Total Pages: 117
Release: 1995
Genre: Mathematics
ISBN: 0821826107

A general density theory of the set of prime divisors of a certain family of linear recurring sequences with constant coefficients, a family which is defined for any order recursion, is built up from the work of Lucas, Laxton, Hasse, and Lagarias. In particular, in this theory the notion of the rank of a prime divisor as well as the notion of a Companion Lucas sequence (Lucas), the group associated with a given second-order recursion (Laxton), and the effective computation of densities (Hasse and Lagarias) are first combined and then generalized to any order recursion.

Recurrence Sequences

Recurrence Sequences
Author: Graham Everest
Publisher: American Mathematical Soc.
Total Pages: 338
Release: 2015-09-03
Genre: Mathematics
ISBN: 1470423154

Recurrence sequences are of great intrinsic interest and have been a central part of number theory for many years. Moreover, these sequences appear almost everywhere in mathematics and computer science. This book surveys the modern theory of linear recurrence sequences and their generalizations. Particular emphasis is placed on the dramatic impact that sophisticated methods from Diophantine analysis and transcendence theory have had on the subject. Related work on bilinear recurrences and an emerging connection between recurrences and graph theory are covered. Applications and links to other areas of mathematics are described, including combinatorics, dynamical systems and cryptography, and computer science. The book is suitable for researchers interested in number theory, combinatorics, and graph theory.

The Lucas Sequences

The Lucas Sequences
Author: Christian J.-C. Ballot
Publisher: Springer Nature
Total Pages: 312
Release: 2023-11-20
Genre: Mathematics
ISBN: 3031372387

Although the Lucas sequences were known to earlier investigators such as Lagrange, Legendre and Genocchi, it is because of the enormous number and variety of results involving them, revealed by Édouard Lucas between 1876 and 1880, that they are now named after him. Since Lucas’ early work, much more has been discovered concerning these remarkable mathematical objects, and the objective of this book is to provide a much more thorough discussion of them than is available in existing monographs. In order to do this a large variety of results, currently scattered throughout the literature, are brought together. Various sections are devoted to the intrinsic arithmetic properties of these sequences, primality testing, the Lucasnomials, some associated density problems and Lucas’ problem of finding a suitable generalization of them. Furthermore, their application, not only to primality testing, but also to integer factoring, efficient solution of quadratic and cubic congruences, cryptography and Diophantine equations are briefly discussed. Also, many historical remarks are sprinkled throughout the book, and a biography of Lucas is included as an appendix.Much of the book is not intended to be overly detailed. Rather, the objective is to provide a good, elementary and clear explanation of the subject matter without too much ancillary material. Most chapters, with the exception of the second and the fourth, will address a particular theme, provide enough information for the reader to get a feel for the subject and supply references to more comprehensive results. Most of this work should be accessible to anyone with a basic knowledge of elementary number theory and abstract algebra. The book’s intended audience is number theorists, both professional and amateur, students and enthusiasts.

Rational Number Theory in the 20th Century

Rational Number Theory in the 20th Century
Author: Władysław Narkiewicz
Publisher: Springer Science & Business Media
Total Pages: 659
Release: 2011-09-02
Genre: Mathematics
ISBN: 0857295322

The last one hundred years have seen many important achievements in the classical part of number theory. After the proof of the Prime Number Theorem in 1896, a quick development of analytical tools led to the invention of various new methods, like Brun's sieve method and the circle method of Hardy, Littlewood and Ramanujan; developments in topics such as prime and additive number theory, and the solution of Fermat’s problem. Rational Number Theory in the 20th Century: From PNT to FLT offers a short survey of 20th century developments in classical number theory, documenting between the proof of the Prime Number Theorem and the proof of Fermat's Last Theorem. The focus lays upon the part of number theory that deals with properties of integers and rational numbers. Chapters are divided into five time periods, which are then further divided into subject areas. With the introduction of each new topic, developments are followed through to the present day. This book will appeal to graduate researchers and student in number theory, however the presentation of main results without technicalities will make this accessible to anyone with an interest in the area.

The Little Book of Bigger Primes

The Little Book of Bigger Primes
Author: Paulo Ribenboim
Publisher: Springer Science & Business Media
Total Pages: 250
Release: 2013-03-09
Genre: Mathematics
ISBN: 1475743300

This book could have been called "Selections from the Book of Prime Number Records." However, I prefered the title which propelled you on the first place to open it, and perhaps (so I hope) to buy it! Richard K. Guy, with his winning ways, suggested the title to me, and I am grateful. But the book isn't very different from its parent. Like a bonsai, which has all the main characteristics of the full-sized tree, this little paperback should exert the same fatal attraction. I wish it to be as dangerous as the other one, in the saying of John Brillhart. I wish that you, young student, teacher or retired mathematician, engineer, computer buff, all of you who are friends of numbers, to be driven into thinking about the beautiful theory of prime numbers, with its inherent mystery. I wish you to exercise your brain and fingers-not vice-versa. But I do not wish you, specialist in number theory to look at this little book-most likely you have been eliminated from this shorter version-what a terrible feeling. But do not cry, you had your book already. This one is for those who will be taking over and should put their steps forward, mostly little, occasionally giant, to develop the science of numbers. Paulo Ribenboim Contents Preface vii Guiding the Reader xii Index of Notations xiii Introduction 1 1 How Many Prime Numbers Are There? 3 I. Euclid's Proof .. 3 11. Kummer's Proof 4 II. P6lya's Proof . .

The New Book of Prime Number Records

The New Book of Prime Number Records
Author: Paulo Ribenboim
Publisher: Springer Science & Business Media
Total Pages: 558
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461207592

This text originated as a lecture delivered November 20, 1984, at Queen's University, in the undergraduate colloquium senes. In another colloquium lecture, my colleague Morris Orzech, who had consulted the latest edition of the Guinness Book of Records, reminded me very gently that the most "innumerate" people of the world are of a certain trible in Mato Grosso, Brazil. They do not even have a word to express the number "two" or the concept of plurality. "Yes, Morris, I'm from Brazil, but my book will contain numbers different from ·one.''' He added that the most boring 800-page book is by two Japanese mathematicians (whom I'll not name) and consists of about 16 million decimal digits of the number Te. "I assure you, Morris, that in spite of the beauty of the appar ent randomness of the decimal digits of Te, I'll be sure that my text will include also some words." And then I proceeded putting together the magic combina tion of words and numbers, which became The Book of Prime Number Records. If you have seen it, only extreme curiosity could impel you to have this one in your hands. The New Book of Prime Number Records differs little from its predecessor in the general planning. But it contains new sections and updated records.

Combinatorial Number Theory

Combinatorial Number Theory
Author: Bruce Landman
Publisher: Walter de Gruyter
Total Pages: 501
Release: 2011-12-22
Genre: Mathematics
ISBN: 3110925095

This carefully edited volume contains selected refereed papers based on lectures presented by many distinguished speakers at the "Integers Conference 2005", an international conference in combinatorial number theory. The conference was held in celebration of the 70th birthday of Ronald Graham, a leader in several fields of mathematics.

Higher Multiplicities and Almost Free Divisors and Complete Intersections

Higher Multiplicities and Almost Free Divisors and Complete Intersections
Author: James Damon
Publisher: American Mathematical Soc.
Total Pages: 130
Release: 1996
Genre: Mathematics
ISBN: 0821804812

Almost free divisors and complete intersections form a general class of nonisolated hypersurface and completer intersection singularities. They also include discriminants of mappings, bifurcation sets, and certain types of arrangements of hyperplanes such as Coxeter arrangements and generic arrangements. Associated to the singularities of this class is a "singular Milnor fibration" which has the same homotopy properties as the Milnor fibration for isolated singularities. This memoir deduces topological properties of singularities in a number of situations including: complements of hyperplane arrangements, various nonisolated complete intersections, nonlinear arrangements of hypersurfaces, functions on discriminants, singularities defined by compositions of functions, and bifurcation sets.

The Finite Irreducible Linear 2-Groups of Degree 4

The Finite Irreducible Linear 2-Groups of Degree 4
Author: Dane Laurence Flannery
Publisher: American Mathematical Soc.
Total Pages: 93
Release: 1997
Genre: Mathematics
ISBN: 0821806254

This memoir contains a complete classification of the finite irreducible 2-subgroups of GL(4, C). Specifically, the author provides a parametrized list of representatives for the conjugacy classes of such groups, where each representative is defined by generating a set of monomial matrices. The problem is treated by a variety of techniques, including: elementary character theory; a method for describing Hasse diagrams of submodule lattices; and calculation of 2-cohomology by means of the Lyndon-Hochschild-Serre spectral sequence. Related questions concerning isomorphism between the listed groups and Schur indices of their defining characters are also considered

Large Time Behavior of Solutions for General Quasilinear Hyperbolic-Parabolic Systems of Conservation Laws

Large Time Behavior of Solutions for General Quasilinear Hyperbolic-Parabolic Systems of Conservation Laws
Author: Tai-Ping Liu
Publisher: American Mathematical Soc.
Total Pages: 135
Release: 1997
Genre: Mathematics
ISBN: 0821805452

We are interested in the time-asymptotic behavior of solutions to viscous conservation laws. Through the pointwise estimates for the Green's function of the linearized system and the analysis of coupling of nonlinear diffusion waves, we obtain explicit expressions of the time-asymptotic behavior of the solutions. This yields optimal estimates in the integral norms. For most physical models, the viscosity matrix is not positive definite and the system is hyperbolic-parabolic, and not uniformly parabolic. This implies that the Green's function may contain Dirac [lowercase Greek]Delta-functions. When the corresponding inviscid system is non-strictly hyperbolic, the time-asymptotic state contains generalized Burgers solutions. These are illustrated by applying our general theory to the compressible Navier-Stokes equations and the equations of magnetohydrodynamics.