Demystifying Big Data And Machine Learning For Healthcare
Download Demystifying Big Data And Machine Learning For Healthcare full books in PDF, epub, and Kindle. Read online free Demystifying Big Data And Machine Learning For Healthcare ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Prashant Natarajan |
Publisher | : CRC Press |
Total Pages | : 210 |
Release | : 2017-02-15 |
Genre | : Medical |
ISBN | : 1315389312 |
Healthcare transformation requires us to continually look at new and better ways to manage insights – both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization’s day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it. Demystifying Big Data and Machine Learning for Healthcare investigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V’s that matter in healthcare and why Harmonize the 4 C’s across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them.
Author | : Pradeep N |
Publisher | : Academic Press |
Total Pages | : 374 |
Release | : 2021-06-10 |
Genre | : Science |
ISBN | : 0128220449 |
Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics presents the changing world of data utilization, especially in clinical healthcare. Various techniques, methodologies, and algorithms are presented in this book to organize data in a structured manner that will assist physicians in the care of patients and help biomedical engineers and computer scientists understand the impact of these techniques on healthcare analytics. The book is divided into two parts: Part 1 covers big data aspects such as healthcare decision support systems and analytics-related topics. Part 2 focuses on the current frameworks and applications of deep learning and machine learning, and provides an outlook on future directions of research and development. The entire book takes a case study approach, providing a wealth of real-world case studies in the application chapters to act as a foundational reference for biomedical engineers, computer scientists, healthcare researchers, and clinicians. - Provides a comprehensive reference for biomedical engineers, computer scientists, advanced industry practitioners, researchers, and clinicians to understand and develop healthcare analytics using advanced tools and technologies - Includes in-depth illustrations of advanced techniques via dataset samples, statistical tables, and graphs with algorithms and computational methods for developing new applications in healthcare informatics - Unique case study approach provides readers with insights for practical clinical implementation
Author | : Prashant Natarajan |
Publisher | : CRC Press |
Total Pages | : 465 |
Release | : 2021-12-30 |
Genre | : Computers |
ISBN | : 1351032925 |
Artificial intelligence (AI) in its various forms –– machine learning, chatbots, robots, agents, etc. –– is increasingly being seen as a core component of enterprise business workflow and information management systems. The current promise and hype around AI are being driven by software vendors, academic research projects, and startups. However, we posit that the greatest promise and potential for AI lies in the enterprise with its applications touching all organizational facets. With increasing business process and workflow maturity, coupled with recent trends in cloud computing, datafication, IoT, cybersecurity, and advanced analytics, there is an understanding that the challenges of tomorrow cannot be solely addressed by today’s people, processes, and products. There is still considerable mystery, hype, and fear about AI in today’s world. A considerable amount of current discourse focuses on a dystopian future that could adversely affect humanity. Such opinions, with understandable fear of the unknown, don’t consider the history of human innovation, the current state of business and technology, or the primarily augmentative nature of tomorrow’s AI. This book demystifies AI for the enterprise. It takes readers from the basics (definitions, state-of-the-art, etc.) to a multi-industry journey, and concludes with expert advice on everything an organization must do to succeed. Along the way, we debunk myths, provide practical pointers, and include best practices with applicable vignettes. AI brings to enterprise the capabilities that promise new ways by which professionals can address both mundane and interesting challenges more efficiently, effectively, and collaboratively (with humans). The opportunity for tomorrow’s enterprise is to augment existing teams and resources with the power of AI in order to gain competitive advantage, discover new business models, establish or optimize new revenues, and achieve better customer and user satisfaction.
Author | : Prashant Natarajan |
Publisher | : CRC Press |
Total Pages | : 210 |
Release | : 2017 |
Genre | : Business & Economics |
ISBN | : 9781315389325 |
Healthcare transformation requires us to continually look at new and better ways to manage insights - both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization's day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it. Demystifying Big Data and Machine Learning for Healthcareinvestigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V's that matter in healthcare and why Harmonize the 4 C's across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them.
Author | : Prashant Natarajan |
Publisher | : CRC Press |
Total Pages | : 433 |
Release | : 2021-12-30 |
Genre | : Computers |
ISBN | : 1351032933 |
Artificial intelligence (AI) in its various forms –– machine learning, chatbots, robots, agents, etc. –– is increasingly being seen as a core component of enterprise business workflow and information management systems. The current promise and hype around AI are being driven by software vendors, academic research projects, and startups. However, we posit that the greatest promise and potential for AI lies in the enterprise with its applications touching all organizational facets. With increasing business process and workflow maturity, coupled with recent trends in cloud computing, datafication, IoT, cybersecurity, and advanced analytics, there is an understanding that the challenges of tomorrow cannot be solely addressed by today’s people, processes, and products. There is still considerable mystery, hype, and fear about AI in today’s world. A considerable amount of current discourse focuses on a dystopian future that could adversely affect humanity. Such opinions, with understandable fear of the unknown, don’t consider the history of human innovation, the current state of business and technology, or the primarily augmentative nature of tomorrow’s AI. This book demystifies AI for the enterprise. It takes readers from the basics (definitions, state-of-the-art, etc.) to a multi-industry journey, and concludes with expert advice on everything an organization must do to succeed. Along the way, we debunk myths, provide practical pointers, and include best practices with applicable vignettes. AI brings to enterprise the capabilities that promise new ways by which professionals can address both mundane and interesting challenges more efficiently, effectively, and collaboratively (with humans). The opportunity for tomorrow’s enterprise is to augment existing teams and resources with the power of AI in order to gain competitive advantage, discover new business models, establish or optimize new revenues, and achieve better customer and user satisfaction.
Author | : Keshav Kaushik |
Publisher | : CRC Press |
Total Pages | : 247 |
Release | : 2023-09-28 |
Genre | : Computers |
ISBN | : 1000936880 |
This book aims to provide readers with a comprehensive guide to the fundamentals of big data analytics and its applications in various industries and smart societies. What sets this book apart is its in-depth coverage of different aspects of big data analytics, including machine learning algorithms, spatial data analytics, and IoT-based smart systems for precision agriculture. The book also delves into the use of big data analytics in healthcare, energy management, and agricultural development, among others. The authors have used clear and concise language, along with relevant examples and case studies, to help readers understand the complex concepts involved in big data analytics. Key Features: Comprehensive coverage of the fundamentals of big data analytics In-depth discussion of different aspects of big data analytics, including machine learning algorithms, spatial data analytics, and IoT-based smart systems. Practical examples and case studies to help readers understand complex concepts. Coverage of the use of big data analytics in various industries, including healthcare, energy management, and agriculture Discussion of challenges and legal frameworks involved in big data analytics. Clear and concise language that is easy to understand. This book is a valuable resource for business owners, data analysts, students, and anyone interested in the field of big data analytics. It provides readers with the tools they need to leverage the power of big data and make informed decisions that can help their organizations succeed. Whether you are new to the field or an experienced practitioner, "Demystifying Big Data Analytics for Industries and Smart Societies" is must-read.
Author | : Prashant Kikani |
Publisher | : BPB Publications |
Total Pages | : 170 |
Release | : 2021-01-05 |
Genre | : Computers |
ISBN | : 9389898706 |
Learn AI & Machine Learning from the first principles. KEY FEATURESÊÊ _ Explore how different industries are using AI and ML for diverse use-cases. _ Learn core concepts of Data Science, Machine Learning, Deep Learning and NLP in an easy and intuitive manner. _ Cutting-edge coverage on use of ML for business products and services. _ Explore how different companies are monetizing AI and ML technologies. _ Learn how you can start your own journey in the AI field from scratch. DESCRIPTION AI and machine learning (ML) are probably the most fascinating technologies of the 21st century. AI is literally in every industry now. From medical to climate change, education to sport, finance to entertainment, AI is disrupting every industry as we know. So, the basic knowledge of AI/ML becomes mandatory for everyone. This book is your first step to start the journey in this field. Along with basic concepts of fields, like machine learning, deep learning and NLP, we will also explore how big companies are using these technologies to deliver greater user experience and earning millions of dollars in profit. Also, we will see how the owners of small- or medium-sized businesses can leverage and integrate these technologies with their products and services. Leveraging AI and ML can become that competitive moat which can differentiate the product from others. In this book, you will learn the root concepts of AI/ML and how these inanimate machines can actually become smarter than the humans at a few tasks, and how companies are using AI and how you can leverage AI to earn profits. WHAT YOU WILL LEARN Ê _ Core concepts of data science, machine learning, deep learning and NLP in simple and intuitive words. _ How you can leverage and integrate AI technologies in your business to differentiate your product in the market. _ The limitations of traditional non-tech businesses and how AI can bridge those gaps to increase revenues and decrease costs. _ How AI can help companies in launching new products, improving existing ones and automating mundane processes. _ Explore how big tech companies are using AI to automate different tasks and providing unique product experiences to their users. WHO THIS BOOK IS FORÊÊ This book is for anyone who is curious about this fascinating technology and how it really works at its core. It is also beneficial to those who want to start their career in AI/ ML. TABLE OF CONTENTSÊ 1. Introduction 2. Going deeper in ML concepts 3. Business perspective of AI 4. How to get started and pitfalls to avoid
Author | : Tina Nguyen |
Publisher | : Ethics International Press |
Total Pages | : 229 |
Release | : 2023-11-25 |
Genre | : Medical |
ISBN | : 180441106X |
This book explores the ethical governance of Artificial Intelligence (AI) & Machine Learning (ML) in healthcare. AI/ML usage in healthcare as well as our daily lives is not new. However, the direct, and oftentimes long-term effects of current technologies, in addition to the onset of future innovations, have caused much debate about the safety of AI/ML. On the one hand, AI/ML has the potential to provide effective and efficient care to patients, and this sways the argument in favor of continuing to use AI/ML; but on the other hand, the dangers (including unforeseen future consequences of the further development of the technology) leads to vehement disagreement with further AI/ML usage. Due to its potential for beneficial outcomes, the book opts to push for ethical AI/ML to be developed and examines various areas in healthcare, such as big data analytics and clinical decision-making, to uncover and discuss the importance of developing ethical governance for AI/ML in this setting.
Author | : Whig, Pawan |
Publisher | : IGI Global |
Total Pages | : 334 |
Release | : 2024-04-29 |
Genre | : Computers |
ISBN | : |
In today's data-driven era, the persistent gap between theoretical understanding and practical implementation in data science poses a formidable challenge. As we navigate through the complexities of harnessing data, deciphering algorithms, and unleashing the potential of modeling techniques, the need for a comprehensive guide becomes increasingly evident. This is the landscape explored in Practical Applications of Data Processing, Algorithms, and Modeling. This book is a solution to the pervasive problem faced by aspiring data scientists, seasoned professionals, and anyone fascinated by the power of data-driven insights. From the web of algorithms to the strategic role of modeling in decision-making, this book is an effective resource in a landscape where data, without proper guidance, risks becoming an untapped resource. The objective of Practical Applications of Data Processing, Algorithms, and Modeling is to address the pressing issue at the heart of data science – the divide between theory and practice. This book seeks to examine the complexities of data processing techniques, algorithms, and modeling methodologies, offering a practical understanding of these concepts. By focusing on real-world applications, the book provides readers with the tools and knowledge needed to bridge the gap effectively, allowing them to apply these techniques across diverse industries and domains. In the face of constant technological advancements, the book highlights the latest trends and innovative approaches, fostering a deeper comprehension of how these technologies can be leveraged to solve complex problems. As a practical guide, it empowers readers with hands-on examples, case studies, and problem-solving scenarios, aiming to instill confidence in navigating data challenges and making informed decisions using data-driven insights.
Author | : Rasit Dinc |
Publisher | : Troubador Publishing Ltd |
Total Pages | : 690 |
Release | : 2024-07-23 |
Genre | : Technology & Engineering |
ISBN | : 1805149415 |
Authored by a leading voice in the field, Machine Learning for Healthcare provides a gateway to revolutionize the understanding of medicine and patient care. The book unlocks the secrets of clinical data, harnessing the power of machine learning to diagnose diseases with unprecedented accuracy, and predicting patient outcomes with confidence. From the intricacies of disease progression to the human factors shaping healthcare delivery, each chapter is a testament to the transformative potential of AI in medicine. Readers include anyone passionate about the intersection of technology and human well-being from healthcare professionals eager to stay ahead of the curve, to bystanders fascinated by the possibilities of AI.