Anelastic Relaxation In Crystalline Solids

Anelastic Relaxation In Crystalline Solids
Author: A.S. Nowick
Publisher: Elsevier
Total Pages: 695
Release: 2012-12-02
Genre: Science
ISBN: 0323143318

Anelastic Relaxation in Crystalline Solids provides an overview of anelasticity in crystals. This book discusses the various physical and chemical phenomena in crystalline solids. Comprised of 20 chapters, this volume begins with a discussion on the formal theory of anelasticity, and then explores the anelastic behavior, which is a manifestation of internal relaxation process. This text lays the groundwork for the formal theory by introducing the postulates. Other chapters explore the different dynamical methods that are frequently used in studying anelasticity. The reader is then introduced to the physical origin of anelastic relaxation process in terms of atomic model. This text also discusses the various types of point defects in crystals, including elementary point defects, composite defects, and self-interstitial defects. The final chapter provides relevant information on the various frequency ranges used in the study. This book is intended for crystallographers, mechanical engineers, metallurgical engineers, solid-state physicists, materials scientists, and researchers.

Advances in Multifield Theories for Continua with Substructure

Advances in Multifield Theories for Continua with Substructure
Author: Gianfranco Capriz
Publisher: Springer Science & Business Media
Total Pages: 269
Release: 2012-12-06
Genre: Mathematics
ISBN: 0817681582

Toachieve design, implementation,and servicing ofcomplex systems and struc tures in an efficient and cost-effective way,a deeper knowledge and understanding of the subtle cast and detailed evolution of materials is needed. The analysis in demand borders with the molecular and atomic one, spanning all the way down from classical continua. The study of the behavior of complex materials in sophisticated devices also opens intricate questions about the applicability of primary axioms ofcontinuum mechanics such as the ultimate nature of the material element itselfand the possibility ofidentifying itperfectly. So it is necessary to develop tools that allow usto formulate both theoretical models and methods of numerical approximation for the analysis of material substructures. Multifield theories in continuum mechanics, which bridge classical materials science and modern continuum mechanics, provide precisely these tools. Multifield theories not only address problems of material substructures, but also encompass well-recognized approaches to the study of soft condensed matter and allow one to model disparate conditions in various states ofmatter. However, research inmultifield theories is vast, and there is little in the way of a comprehensive distillation of the subject from an engineer's perspective. Therefore, the papers in the present volume, 1 which grew out of our experience as editors for an engineeringjournal, tackle some fundamental questions,suggest solutions of concrete problems, and strive to interpret a host of experimental evidence. In this spirit, each of the authors has contributed original results having in mind their wider applicability.

Recent Advances in Elasticity, Viscoelasticity, and Inelasticity

Recent Advances in Elasticity, Viscoelasticity, and Inelasticity
Author: Tse-Chin Woo
Publisher: World Scientific
Total Pages: 252
Release: 1995
Genre: Technology & Engineering
ISBN: 9789810221034

This is a collection of papers dedicated to Prof T C Woo to mark his 70th birthday. The papers focus on recent advances in elasticity, viscoelasticity and inelasticity, which are related to Prof Woo's work. Prof Woo's recent work concentrates on the viscoelastic and viscoplastic response of metals and plastics when thermal effects are significant, and the papers here address open questions in these and related areas.

Nondestructive Characterization of Materials II

Nondestructive Characterization of Materials II
Author: Jean F. Bussière
Publisher: Springer Science & Business Media
Total Pages: 750
Release: 2013-03-14
Genre: Technology & Engineering
ISBN: 1468453386

The possibility of nondestructively characterizing the microstruc ture, morphology or mechanical properties of materials is certainly a fascinating subject. In principle, such techniques can be used at all stages of a material's life - from the early stages of processing, to the end of a structural component's useful life. Interest in the subject thus arises not only from a purely scientific point of view but is also strongly motivated by economic pressures to improve productivity and quality in manufacturing, to insure the reliability and extend the life of existing structures. The present volume represents the edited papers presented at the Second International Symposium on the Nondestructive Characterization of Materials, held in Montreal, Canada, July 21-23, 1986. The Proceedings are divided into eight sections, which reflect the multidisciplinary nature of characterizing materials nondestructively: Polymers and Composites, Ceramics and Powder Metallurgy, Metals, Layered Structures/Adhesive Bonds/Welding, Degradation/Aging, Texture/ Anisotropy, Stress, and New Techniques. Invited papers by R. Hadcock of Grumman Aircraft Systems, R. Cannon of Rutgers University, H. Yada of Nippon Steel and R. Bridenbaugh of Alcoa review respectively the processing of polymer matrix composites, ceramics, steel and aluminum, emphasizing the need for material property sensors to improve process and quality control. Two other invited papers, one by A. Wedgwood of Harwell and the other by P. Holler of the IzFP in Saarbrucken review state of the art techniques to characterize particulate matter and metals respectively.

Nondestructive Characterization of Materials VI

Nondestructive Characterization of Materials VI
Author: Robert E. Green
Publisher: Springer Science & Business Media
Total Pages: 822
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 1461525748

Traditionally the vast majority of materials characterization techniques have been destructive, e. g. , chemical compositional analysis, metallographic determination of microstructure, tensile test measurement of mechanical properties, etc. Also, traditionally, nondestructive techniques have been used almost exclusively for the detection of macroscopic defects, mostly cracks, in structures and devices which have already been constructed and have already been in service for an extended period of time. Following these conventional nondestructive tests, it has been common practice to use somewhat arbitrary accept-reject criteria to decide whether or not the structure or device should be removed from service. The present unfavorable status of a large segment of industry, coupled with the desire to keep structures in service well past their original design life, dramatically show that our traditional approaches must be drastically modified if we are to be able to meet future needs. The role of nondestructive characterization of materials is changing and will continue to change dramatically. It has become increasingly evident that it is both practical and cost effective to expand the role of nondestructive evaluation to include all aspects of materials' production and application and to introduce it much earlier in the manufacturing cycle. In fact, the recovery of a large portion of industry from severe economic problems is dependent, in part, on the successful implementation of this expanded role.