Deep Learning Design Patterns
Download Deep Learning Design Patterns full books in PDF, epub, and Kindle. Read online free Deep Learning Design Patterns ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Valliappa Lakshmanan |
Publisher | : O'Reilly Media |
Total Pages | : 408 |
Release | : 2020-10-15 |
Genre | : Computers |
ISBN | : 1098115759 |
The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice. In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation. You'll learn how to: Identify and mitigate common challenges when training, evaluating, and deploying ML models Represent data for different ML model types, including embeddings, feature crosses, and more Choose the right model type for specific problems Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning Deploy scalable ML systems that you can retrain and update to reflect new data Interpret model predictions for stakeholders and ensure models are treating users fairly
Author | : Andrew Ferlitsch |
Publisher | : Simon and Schuster |
Total Pages | : 755 |
Release | : 2021-10-12 |
Genre | : Computers |
ISBN | : 163835667X |
Discover best practices, reproducible architectures, and design patterns to help guide deep learning models from the lab into production. In Deep Learning Patterns and Practices you will learn: Internal functioning of modern convolutional neural networks Procedural reuse design pattern for CNN architectures Models for mobile and IoT devices Assembling large-scale model deployments Optimizing hyperparameter tuning Migrating a model to a production environment The big challenge of deep learning lies in taking cutting-edge technologies from R&D labs through to production. Deep Learning Patterns and Practices is here to help. This unique guide lays out the latest deep learning insights from author Andrew Ferlitsch’s work with Google Cloud AI. In it, you'll find deep learning models presented in a unique new way: as extendable design patterns you can easily plug-and-play into your software projects. Each valuable technique is presented in a way that's easy to understand and filled with accessible diagrams and code samples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Discover best practices, design patterns, and reproducible architectures that will guide your deep learning projects from the lab into production. This awesome book collects and illuminates the most relevant insights from a decade of real world deep learning experience. You’ll build your skills and confidence with each interesting example. About the book Deep Learning Patterns and Practices is a deep dive into building successful deep learning applications. You’ll save hours of trial-and-error by applying proven patterns and practices to your own projects. Tested code samples, real-world examples, and a brilliant narrative style make even complex concepts simple and engaging. Along the way, you’ll get tips for deploying, testing, and maintaining your projects. What's inside Modern convolutional neural networks Design pattern for CNN architectures Models for mobile and IoT devices Large-scale model deployments Examples for computer vision About the reader For machine learning engineers familiar with Python and deep learning. About the author Andrew Ferlitsch is an expert on computer vision, deep learning, and operationalizing ML in production at Google Cloud AI Developer Relations. Table of Contents PART 1 DEEP LEARNING FUNDAMENTALS 1 Designing modern machine learning 2 Deep neural networks 3 Convolutional and residual neural networks 4 Training fundamentals PART 2 BASIC DESIGN PATTERN 5 Procedural design pattern 6 Wide convolutional neural networks 7 Alternative connectivity patterns 8 Mobile convolutional neural networks 9 Autoencoders PART 3 WORKING WITH PIPELINES 10 Hyperparameter tuning 11 Transfer learning 12 Data distributions 13 Data pipeline 14 Training and deployment pipeline
Author | : Yuan Tang |
Publisher | : Manning |
Total Pages | : 375 |
Release | : 2022-04-26 |
Genre | : Computers |
ISBN | : 9781617299025 |
Practical patterns for scaling machine learning from your laptop to a distributed cluster. Scaling up models from standalone devices to large distributed clusters is one of the biggest challenges faced by modern machine learning practitioners. Distributed Machine Learning Patterns teaches you how to scale machine learning models from your laptop to large distributed clusters. In Distributed Machine Learning Patterns, you’ll learn how to apply established distributed systems patterns to machine learning projects, and explore new ML-specific patterns as well. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Real-world scenarios, hands-on projects, and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelines. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
Author | : Addy Osmani |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 247 |
Release | : 2012-07-08 |
Genre | : Computers |
ISBN | : 1449334873 |
With Learning JavaScript Design Patterns, you’ll learn how to write beautiful, structured, and maintainable JavaScript by applying classical and modern design patterns to the language. If you want to keep your code efficient, more manageable, and up-to-date with the latest best practices, this book is for you. Explore many popular design patterns, including Modules, Observers, Facades, and Mediators. Learn how modern architectural patterns—such as MVC, MVP, and MVVM—are useful from the perspective of a modern web application developer. This book also walks experienced JavaScript developers through modern module formats, how to namespace code effectively, and other essential topics. Learn the structure of design patterns and how they are written Understand different pattern categories, including creational, structural, and behavioral Walk through more than 20 classical and modern design patterns in JavaScript Use several options for writing modular code—including the Module pattern, Asyncronous Module Definition (AMD), and CommonJS Discover design patterns implemented in the jQuery library Learn popular design patterns for writing maintainable jQuery plug-ins "This book should be in every JavaScript developer’s hands. It’s the go-to book on JavaScript patterns that will be read and referenced many times in the future."—Andrée Hansson, Lead Front-End Developer, presis!
Author | : Allen Holub |
Publisher | : Apress |
Total Pages | : 426 |
Release | : 2004-09-27 |
Genre | : Computers |
ISBN | : 1430207256 |
* Allen Holub is a highly regarded instructor for the University of California, Berkeley, Extension. He has taught since 1982 on various topics, including Object-Oriented Analysis and Design, Java, C++, C. Holub will use this book in his Berkeley Extension classes. * Holub is a regular presenter at the Software Development conferences and is Contributing Editor for the online magazine JavaWorld, for whom he writes the Java Toolbox. He also wrote the OO Design Process column for IBM DeveloperWorks. * This book is not time-sensitive. It is an extremely well-thought out approach to learning design patterns, with Java as the example platform, but the concepts presented are not limited to just Java programmers. This is a complement to the Addison-Wesley seminal "Design Patterns" book by the "Gang of Four".
Author | : Moritz Hardt |
Publisher | : Princeton University Press |
Total Pages | : 321 |
Release | : 2022-08-23 |
Genre | : Computers |
ISBN | : 0691233721 |
An authoritative, up-to-date graduate textbook on machine learning that highlights its historical context and societal impacts Patterns, Predictions, and Actions introduces graduate students to the essentials of machine learning while offering invaluable perspective on its history and social implications. Beginning with the foundations of decision making, Moritz Hardt and Benjamin Recht explain how representation, optimization, and generalization are the constituents of supervised learning. They go on to provide self-contained discussions of causality, the practice of causal inference, sequential decision making, and reinforcement learning, equipping readers with the concepts and tools they need to assess the consequences that may arise from acting on statistical decisions. Provides a modern introduction to machine learning, showing how data patterns support predictions and consequential actions Pays special attention to societal impacts and fairness in decision making Traces the development of machine learning from its origins to today Features a novel chapter on machine learning benchmarks and datasets Invites readers from all backgrounds, requiring some experience with probability, calculus, and linear algebra An essential textbook for students and a guide for researchers
Author | : Yuxi (Hayden) Liu |
Publisher | : Packt Publishing Ltd |
Total Pages | : 303 |
Release | : 2019-04-30 |
Genre | : Computers |
ISBN | : 1788990501 |
Concepts, tools, and techniques to explore deep learning architectures and methodologies Key FeaturesExplore advanced deep learning architectures using various datasets and frameworksImplement deep architectures for neural network models such as CNN, RNN, GAN, and many moreDiscover design patterns and different challenges for various deep learning architecturesBook Description Deep learning architectures are composed of multilevel nonlinear operations that represent high-level abstractions; this allows you to learn useful feature representations from the data. This book will help you learn and implement deep learning architectures to resolve various deep learning research problems. Hands-On Deep Learning Architectures with Python explains the essential learning algorithms used for deep and shallow architectures. Packed with practical implementations and ideas to help you build efficient artificial intelligence systems (AI), this book will help you learn how neural networks play a major role in building deep architectures. You will understand various deep learning architectures (such as AlexNet, VGG Net, GoogleNet) with easy-to-follow code and diagrams. In addition to this, the book will also guide you in building and training various deep architectures such as the Boltzmann mechanism, autoencoders, convolutional neural networks (CNNs), recurrent neural networks (RNNs), natural language processing (NLP), GAN, and more—all with practical implementations. By the end of this book, you will be able to construct deep models using popular frameworks and datasets with the required design patterns for each architecture. You will be ready to explore the potential of deep architectures in today's world. What you will learnImplement CNNs, RNNs, and other commonly used architectures with PythonExplore architectures such as VGGNet, AlexNet, and GoogLeNetBuild deep learning architectures for AI applications such as face and image recognition, fraud detection, and many moreUnderstand the architectures and applications of Boltzmann machines and autoencoders with concrete examples Master artificial intelligence and neural network concepts and apply them to your architectureUnderstand deep learning architectures for mobile and embedded systemsWho this book is for If you’re a data scientist, machine learning developer/engineer, or deep learning practitioner, or are curious about AI and want to upgrade your knowledge of various deep learning architectures, this book will appeal to you. You are expected to have some knowledge of statistics and machine learning algorithms to get the best out of this book
Author | : Mark Treveil |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 171 |
Release | : 2020-11-30 |
Genre | : Computers |
ISBN | : 1098116429 |
More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Some of the challenges and barriers to operationalization are technical, but others are organizational. Either way, the bottom line is that models not in production can't provide business impact. This book introduces the key concepts of MLOps to help data scientists and application engineers not only operationalize ML models to drive real business change but also maintain and improve those models over time. Through lessons based on numerous MLOps applications around the world, nine experts in machine learning provide insights into the five steps of the model life cycle--Build, Preproduction, Deployment, Monitoring, and Governance--uncovering how robust MLOps processes can be infused throughout. This book helps you: Fulfill data science value by reducing friction throughout ML pipelines and workflows Refine ML models through retraining, periodic tuning, and complete remodeling to ensure long-term accuracy Design the MLOps life cycle to minimize organizational risks with models that are unbiased, fair, and explainable Operationalize ML models for pipeline deployment and for external business systems that are more complex and less standardized
Author | : Eric Freeman |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 694 |
Release | : 2004-10-25 |
Genre | : Computers |
ISBN | : 0596800746 |
Using research in neurobiology, cognitive science and learning theory, this text loads patterns into your brain in a way that lets you put them to work immediately, makes you better at solving software design problems, and improves your ability to speak the language of patterns with others on your team.
Author | : Russ Olsen |
Publisher | : Pearson Education |
Total Pages | : 559 |
Release | : 2007-12-10 |
Genre | : Computers |
ISBN | : 0132702509 |
Praise for Design Patterns in Ruby "Design Patterns in Ruby documents smart ways to resolve many problems that Ruby developers commonly encounter. Russ Olsen has done a great job of selecting classic patterns and augmenting these with newer patterns that have special relevance for Ruby. He clearly explains each idea, making a wealth of experience available to Ruby developers for their own daily work." —Steve Metsker, Managing Consultant with Dominion Digital, Inc. "This book provides a great demonstration of the key 'Gang of Four' design patterns without resorting to overly technical explanations. Written in a precise, yet almost informal style, this book covers enough ground that even those without prior exposure to design patterns will soon feel confident applying them using Ruby. Olsen has done a great job to make a book about a classically 'dry' subject into such an engaging and even occasionally humorous read." —Peter Cooper "This book renewed my interest in understanding patterns after a decade of good intentions. Russ picked the most useful patterns for Ruby and introduced them in a straightforward and logical manner, going beyond the GoF's patterns. This book has improved my use of Ruby, and encouraged me to blow off the dust covering the GoF book." —Mike Stok "Design Patterns in Ruby is a great way for programmers from statically typed objectoriented languages to learn how design patterns appear in a more dynamic, flexible language like Ruby." —Rob Sanheim, Ruby Ninja, Relevance Most design pattern books are based on C++ and Java. But Ruby is different—and the language's unique qualities make design patterns easier to implement and use. In this book, Russ Olsen demonstrates how to combine Ruby's power and elegance with patterns, and write more sophisticated, effective software with far fewer lines of code. After reviewing the history, concepts, and goals of design patterns, Olsen offers a quick tour of the Ruby language—enough to allow any experienced software developer to immediately utilize patterns with Ruby. The book especially calls attention to Ruby features that simplify the use of patterns, including dynamic typing, code closures, and "mixins" for easier code reuse. Fourteen of the classic "Gang of Four" patterns are considered from the Ruby point of view, explaining what problems each pattern solves, discussing whether traditional implementations make sense in the Ruby environment, and introducing Ruby-specific improvements. You'll discover opportunities to implement patterns in just one or two lines of code, instead of the endlessly repeated boilerplate that conventional languages often require. Design Patterns in Ruby also identifies innovative new patterns that have emerged from the Ruby community. These include ways to create custom objects with metaprogramming, as well as the ambitious Rails-based "Convention Over Configuration" pattern, designed to help integrate entire applications and frameworks. Engaging, practical, and accessible, Design Patterns in Ruby will help you build better software while making your Ruby programming experience more rewarding.