Decoherence, Entanglement and Information Protection in Complex Quantum Systems

Decoherence, Entanglement and Information Protection in Complex Quantum Systems
Author: Vladimir M. Akulin
Publisher: Springer Science & Business Media
Total Pages: 720
Release: 2005-08-10
Genre: Science
ISBN: 9781402032820

This book is a collection of articles on the contemporary status of quantum mechanics, dedicated to the fundamental issues of entanglement, decoherence, irreversibility, information processing, and control of quantum evolution, with a view of possible applications. It has multidisciplinary character and is addressed at a broad readership in physics, computer science, chemistry, and electrical engineering. It is written by the world-leading experts in pertinent fields such as quantum computing, atomic, molecular and optical physics, condensed matter physics, and statistical physics.

Classical and Quantum Computation

Classical and Quantum Computation
Author: Alexei Yu. Kitaev
Publisher: American Mathematical Soc.
Total Pages: 274
Release: 2002
Genre: Computers
ISBN: 0821832298

An introduction to a rapidly developing topic: the theory of quantum computing. Following the basics of classical theory of computation, the book provides an exposition of quantum computation theory. In concluding sections, related topics, including parallel quantum computation, are discussed.

Manipulating Quantum Systems

Manipulating Quantum Systems
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
Total Pages: 315
Release: 2020-09-14
Genre: Science
ISBN: 0309499542

The field of atomic, molecular, and optical (AMO) science underpins many technologies and continues to progress at an exciting pace for both scientific discoveries and technological innovations. AMO physics studies the fundamental building blocks of functioning matter to help advance the understanding of the universe. It is a foundational discipline within the physical sciences, relating to atoms and their constituents, to molecules, and to light at the quantum level. AMO physics combines fundamental research with practical application, coupling fundamental scientific discovery to rapidly evolving technological advances, innovation and commercialization. Due to the wide-reaching intellectual, societal, and economical impact of AMO, it is important to review recent advances and future opportunities in AMO physics. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States assesses opportunities in AMO science and technology over the coming decade. Key topics in this report include tools made of light; emerging phenomena from few- to many-body systems; the foundations of quantum information science and technologies; quantum dynamics in the time and frequency domains; precision and the nature of the universe, and the broader impact of AMO science.

Controlling the Quantum World

Controlling the Quantum World
Author: National Research Council
Publisher: National Academies Press
Total Pages: 245
Release: 2007-06-21
Genre: Science
ISBN: 0309102707

As part of the Physics 2010 decadal survey project, the Department of Energy and the National Science Foundation requested that the National Research Council assess the opportunities, over roughly the next decade, in atomic, molecular, and optical (AMO) science and technology. In particular, the National Research Council was asked to cover the state of AMO science, emphasizing recent accomplishments and identifying new and compelling scientific questions. Controlling the Quantum World, discusses both the roles and challenges for AMO science in instrumentation; scientific research near absolute zero; development of extremely intense x-ray and laser sources; exploration and control of molecular processes; photonics at the nanoscale level; and development of quantum information technology. This book also offers an assessment of and recommendations about critical issues concerning maintaining U.S. leadership in AMO science and technology.

Entanglement, Information, and the Interpretation of Quantum Mechanics

Entanglement, Information, and the Interpretation of Quantum Mechanics
Author: Gregg Jaeger
Publisher: Springer Science & Business Media
Total Pages: 316
Release: 2009-06-12
Genre: Science
ISBN: 3540921281

Entanglement was initially thought by some to be an oddity restricted to the realm of thought experiments. However, Bell’s inequality delimiting local - havior and the experimental demonstration of its violation more than 25 years ago made it entirely clear that non-local properties of pure quantum states are more than an intellectual curiosity. Entanglement and non-locality are now understood to ?gure prominently in the microphysical world, a realm into which technology is rapidly hurtling. Information theory is also increasingly recognized by physicists and philosophers as intimately related to the foun- tions of mechanics. The clearest indicator of this relationship is that between quantum information and entanglement. To some degree, a deep relationship between information and mechanics in the quantum context was already there to be seen upon the introduction by Max Born and Wolfgang Pauli of the idea that the essence of pure quantum states lies in their provision of probabilities regarding the behavior of quantum systems, via what has come to be known as the Born rule. The signi?cance of the relationship between mechanics and information became even clearer with Leo Szilard’s analysis of James Clerk Maxwell’s infamous demon thought experiment. Here, in addition to examining both entanglement and quantum infor- tion and their relationship, I endeavor to critically assess the in?uence of the study of these subjects on the interpretation of quantum theory.

Fundamentals of Quantum Entanglement

Fundamentals of Quantum Entanglement
Author: F. J. Duarte
Publisher: IOP Series in Coherent Sources, Quantum Fundamentals, and Applications
Total Pages: 0
Release: 2022-08-31
Genre: Quantum entanglement
ISBN: 9780750352659

'Fundamentals of Quantum Entanglement' describes the origin of the physics of quantum entanglement and provides a transparent interferometric description of the subject matter. This monograph will be useful to optical engineers, graduate students and those with an interest in quantum entanglement and quantum communications.