Decidability and Boolean Representations

Decidability and Boolean Representations
Author: Stanley Burris
Publisher: American Mathematical Soc.
Total Pages: 117
Release: 1981
Genre: Mathematics
ISBN: 0821822462

In part I we address the question: which varieties have a decidable first order theory? We confine our attention to varieties whose algebras have modular congruence lattices (i.e., modular varieties), and focus primarily on locally finite varieties, although near the end of the paper Zamjatin's description of all decidable varieties of groups and rings, and offer a new proof of it. In part II, we show that if a variety admits such sheaf representations using only finitely many stalks, all of which are finite, then the variety can be decomposed in the product of a discriminator variety and an abelian variety. We continue this investigation by looking at well-known specializations of the sheaf construction, namely Boolean powers and sub-Boolean powers, giving special emphasis to quasi-primal algebras A, such that the sub-Boolean powers of A form a variety (this extends the work of Arens and Kaplansky on finite fields).

Countable Boolean Algebras and Decidability

Countable Boolean Algebras and Decidability
Author: Sergey Goncharov
Publisher: Springer Science & Business Media
Total Pages: 344
Release: 1997-01-31
Genre: Mathematics
ISBN: 9780306110610

This book describes the latest Russian research covering the structure and algorithmic properties of Boolean algebras from the algebraic and model-theoretic points of view. A significantly revised version of the author's Countable Boolean Algebras (Nauka, Novosibirsk, 1989), the text presents new results as well as a selection of open questions on Boolean algebras. Other current features include discussions of the Kottonen algebras in enrichments by ideals and automorphisms, and the properties of the automorphism groups.

Structure of Decidable Locally Finite Varieties

Structure of Decidable Locally Finite Varieties
Author: Ralph McKenzie
Publisher: Springer Science & Business Media
Total Pages: 232
Release: 1989-11-01
Genre: Mathematics
ISBN: 9780817634391

A mathematically precise definition of the intuitive notion of "algorithm" was implicit in Kurt Godel's [1931] paper on formally undecidable propo sitions of arithmetic. During the 1930s, in the work of such mathemati cians as Alonzo Church, Stephen Kleene, Barkley Rosser and Alfred Tarski, Godel's idea evolved into the concept of a recursive function. Church pro posed the thesis, generally accepted today, that an effective algorithm is the same thing as a procedure whose output is a recursive function of the input (suitably coded as an integer). With these concepts, it became possible to prove that many familiar theories are undecidable (or non-recursive)-i. e. , that there does not exist an effective algorithm (recursive function) which would allow one to determine which sentences belong to the theory. It was clear from the beginning that any theory with a rich enough mathematical content must be undecidable. On the other hand, some theories with a substantial content are decidable. Examples of such decidabLe theories are the theory of Boolean algebras (Tarski [1949]), the theory of Abelian groups (Szmiele~ [1955]), and the theories of elementary arithmetic and geometry (Tarski [1951]' but Tarski discovered these results around 1930). The de termination of precise lines of division between the classes of decidable and undecidable theories became an important goal of research in this area. algebra we mean simply any structure (A, h(i E I)} consisting of By an a nonvoid set A and a system of finitary operations Ii over A.

Boolean Constructions in Universal Algebras

Boolean Constructions in Universal Algebras
Author: A.G. Pinus
Publisher: Springer Science & Business Media
Total Pages: 357
Release: 2013-04-17
Genre: Mathematics
ISBN: 9401709386

During the last few decades the ideas, methods, and results of the theory of Boolean algebras have played an increasing role in various branches of mathematics and cybernetics. This monograph is devoted to the fundamentals of the theory of Boolean constructions in universal algebra. Also considered are the problems of presenting different varieties of universal algebra with these constructions, and applications for investigating the spectra and skeletons of varieties of universal algebras. For researchers whose work involves universal algebra and logic.

Algebraic Model Theory

Algebraic Model Theory
Author: Bradd T. Hart
Publisher: Springer Science & Business Media
Total Pages: 285
Release: 2013-03-14
Genre: Mathematics
ISBN: 9401589232

Recent major advances in model theory include connections between model theory and Diophantine and real analytic geometry, permutation groups, and finite algebras. The present book contains lectures on recent results in algebraic model theory, covering topics from the following areas: geometric model theory, the model theory of analytic structures, permutation groups in model theory, the spectra of countable theories, and the structure of finite algebras. Audience: Graduate students in logic and others wishing to keep abreast of current trends in model theory. The lectures contain sufficient introductory material to be able to grasp the recent results presented.

STACS 92

STACS 92
Author: Alain Finkel
Publisher: Springer Science & Business Media
Total Pages: 644
Release: 1992-02-04
Genre: Computers
ISBN: 9783540552109

This volume gives the proceedings of the ninth Symposium on Theoretical Aspects of Computer Science (STACS). This annual symposium is held alternately in France and Germany and is organized jointly by the Special Interest Group for Fundamental Computer Science of the Association Francaise des Sciences et Technologies de l'Information et des Syst mes (AFCET) and the Special Interest Group for Theoretical Computer Science of the Gesellschaft f}r Informatik (GI). The volume includes three invited lectures and sections on parallel algorithms, logic and semantics, computational geometry, automata and languages, structural complexity, computational geometry and learning theory, complexity and communication, distributed systems, complexity, algorithms, cryptography, VLSI, words and rewriting, and systems.

Handbook of Computability Theory

Handbook of Computability Theory
Author: E.R. Griffor
Publisher: Elsevier
Total Pages: 741
Release: 1999-10-01
Genre: Mathematics
ISBN: 0080533043

The chapters of this volume all have their own level of presentation. The topics have been chosen based on the active research interest associated with them. Since the interest in some topics is older than that in others, some presentations contain fundamental definitions and basic results while others relate very little of the elementary theory behind them and aim directly toward an exposition of advanced results. Presentations of the latter sort are in some cases restricted to a short survey of recent results (due to the complexity of the methods and proofs themselves). Hence the variation in level of presentation from chapter to chapter only reflects the conceptual situation itself. One example of this is the collective efforts to develop an acceptable theory of computation on the real numbers. The last two decades has seen at least two new definitions of effective operations on the real numbers.