Trends of Data Science and Applications

Trends of Data Science and Applications
Author: Siddharth Swarup Rautaray
Publisher: Springer Nature
Total Pages: 341
Release: 2021-03-21
Genre: Computers
ISBN: 9813368152

This book includes an extended version of selected papers presented at the 11th Industry Symposium 2021 held during January 7–10, 2021. The book covers contributions ranging from theoretical and foundation research, platforms, methods, applications, and tools in all areas. It provides theory and practices in the area of data science, which add a social, geographical, and temporal dimension to data science research. It also includes application-oriented papers that prepare and use data in discovery research. This book contains chapters from academia as well as practitioners on big data technologies, artificial intelligence, machine learning, deep learning, data representation and visualization, business analytics, healthcare analytics, bioinformatics, etc. This book is helpful for the students, practitioners, researchers as well as industry professional.

Data Science

Data Science
Author: Pallavi Chavan
Publisher: Chapman & Hall/CRC
Total Pages: 0
Release: 2022-07
Genre: Big data
ISBN: 9781032254517

"The proposed book covers the topic of data science in a very comprehensive manner and synthesizes both fundamental and advanced topics of a research area that has now reached maturity. The book starts from the basic concepts of data science; it highlights the types of data, its use and its importance, followed by discussion on a wide range of applications of data science and widely used techniques in data science. Key features: provides an internationally respected collection of scientific research methods, technologies and applications in the area of data science, presents predictive outcomes by applying data science techniques on real life applications, provides readers with the tools, techniques and cases required to excel with modern artificial intelligence methods, and gives the reader variety of intelligent applications that can be designed using data science and its allied fields. The book is aimed primarily at advanced undergraduates and graduates studying machine learning and data science. Researchers and professionals will also find this book useful"--

Data Science Concepts and Techniques with Applications

Data Science Concepts and Techniques with Applications
Author: Usman Qamar
Publisher: Springer Nature
Total Pages: 492
Release: 2023-04-02
Genre: Computers
ISBN: 3031174429

This textbook comprehensively covers both fundamental and advanced topics related to data science. Data science is an umbrella term that encompasses data analytics, data mining, machine learning, and several other related disciplines. The chapters of this book are organized into three parts: The first part (chapters 1 to 3) is a general introduction to data science. Starting from the basic concepts, the book will highlight the types of data, its use, its importance and issues that are normally faced in data analytics, followed by presentation of a wide range of applications and widely used techniques in data science. The second part, which has been updated and considerably extended compared to the first edition, is devoted to various techniques and tools applied in data science. Its chapters 4 to 10 detail data pre-processing, classification, clustering, text mining, deep learning, frequent pattern mining, and regression analysis. Eventually, the third part (chapters 11 and 12) present a brief introduction to Python and R, the two main data science programming languages, and shows in a completely new chapter practical data science in the WEKA (Waikato Environment for Knowledge Analysis), an open-source tool for performing different machine learning and data mining tasks. An appendix explaining the basic mathematical concepts of data science completes the book. This textbook is suitable for advanced undergraduate and graduate students as well as for industrial practitioners who carry out research in data science. They both will not only benefit from the comprehensive presentation of important topics, but also from the many application examples and the comprehensive list of further readings, which point to additional publications providing more in-depth research results or provide sources for a more detailed description of related topics. "This book delivers a systematic, carefully thoughtful material on Data Science." from the Foreword by Witold Pedrycz, U Alberta, Canada.

Data Science and Its Applications

Data Science and Its Applications
Author: Aakanksha Sharaff
Publisher: CRC Press
Total Pages: 443
Release: 2021-08-18
Genre: Computers
ISBN: 1000414000

The term "data" being mostly used, experimented, analyzed, and researched, "Data Science and its Applications" finds relevance in all domains of research studies including science, engineering, technology, management, mathematics, and many more in wide range of applications such as sentiment analysis, social medial analytics, signal processing, gene analysis, market analysis, healthcare, bioinformatics etc. The book on Data Science and its applications discusses about data science overview, scientific methods, data processing, extraction of meaningful information from data, and insight for developing the concept from different domains, highlighting mathematical and statistical models, operations research, computer programming, machine learning, data visualization, pattern recognition and others. The book also highlights data science implementation and evaluation of performance in several emerging applications such as information retrieval, cognitive science, healthcare, and computer vision. The data analysis covers the role of data science depicting different types of data such as text, image, biomedical signal etc. useful for a wide range of real time applications. The salient features of the book are: Overview, Challenges and Opportunities in Data Science and Real Time Applications Addressing Big Data Issues Useful Machine Learning Methods Disease Detection and Healthcare Applications utilizing Data Science Concepts and Deep Learning Applications in Stock Market, Education, Behavior Analysis, Image Captioning, Gene Analysis and Scene Text Analysis Data Optimization Due to multidisciplinary applications of data science concepts, the book is intended for wide range of readers that include Data Scientists, Big Data Analysists, Research Scholars engaged in Data Science and Machine Learning applications.

Mechanistic Data Science for STEM Education and Applications

Mechanistic Data Science for STEM Education and Applications
Author: Wing Kam Liu
Publisher: Springer Nature
Total Pages: 287
Release: 2022-01-01
Genre: Technology & Engineering
ISBN: 3030878325

This book introduces Mechanistic Data Science (MDS) as a structured methodology for combining data science tools with mathematical scientific principles (i.e., “mechanistic” principles) to solve intractable problems. Traditional data science methodologies require copious quantities of data to show a reliable pattern, but the amount of required data can be greatly reduced by considering the mathematical science principles. MDS is presented here in six easy-to-follow modules: 1) Multimodal data generation and collection, 2) extraction of mechanistic features, 3) knowledge-driven dimension reduction, 4) reduced order surrogate models, 5) deep learning for regression and classification, and 6) system and design. These data science and mechanistic analysis steps are presented in an intuitive manner that emphasizes practical concepts for solving engineering problems as well as real-life problems. This book is written in a spectral style and is ideal as an entry level textbook for engineering and data science undergraduate and graduate students, practicing scientists and engineers, as well as STEM (Science, Technology, Engineering, Mathematics) high school students and teachers.

Data Science: From Research to Application

Data Science: From Research to Application
Author: Mahdi Bohlouli
Publisher: Springer Nature
Total Pages: 350
Release: 2020-01-28
Genre: Technology & Engineering
ISBN: 3030373096

This book presents outstanding theoretical and practical findings in data science and associated interdisciplinary areas. Its main goal is to explore how data science research can revolutionize society and industries in a positive way, drawing on pure research to do so. The topics covered range from pure data science to fake news detection, as well as Internet of Things in the context of Industry 4.0. Data science is a rapidly growing field and, as a profession, incorporates a wide variety of areas, from statistics, mathematics and machine learning, to applied big data analytics. According to Forbes magazine, “Data Science” was listed as LinkedIn’s fastest-growing job in 2017. This book presents selected papers from the International Conference on Contemporary Issues in Data Science (CiDaS 2019), a professional data science event that provided a real workshop (not “listen-shop”) where scientists and scholars had the chance to share ideas, form new collaborations, and brainstorm on major challenges; and where industry experts could catch up on emerging solutions to help solve their concrete data science problems. Given its scope, the book will benefit not only data scientists and scientists from other domains, but also industry experts, policymakers and politicians.

Introduction to Data Science

Introduction to Data Science
Author: Laura Igual
Publisher: Springer
Total Pages: 227
Release: 2017-02-22
Genre: Computers
ISBN: 3319500171

This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.

Enabling AI Applications in Data Science

Enabling AI Applications in Data Science
Author: Aboul-Ella Hassanien
Publisher: Springer Nature
Total Pages: 644
Release: 2020-09-23
Genre: Computers
ISBN: 3030520676

This book provides a detailed overview of the latest developments and applications in the field of artificial intelligence and data science. AI applications have achieved great accuracy and performance with the help of developments in data processing and storage. It has also gained strength through the amount and quality of data which is the main nucleus of data science. This book aims to provide the latest research findings in the field of artificial intelligence with data science.

R for Data Science

R for Data Science
Author: Hadley Wickham
Publisher: "O'Reilly Media, Inc."
Total Pages: 521
Release: 2016-12-12
Genre: Computers
ISBN: 1491910364

Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

Machine Learning and Data Science

Machine Learning and Data Science
Author: Prateek Agrawal
Publisher: John Wiley & Sons
Total Pages: 276
Release: 2022-07-25
Genre: Computers
ISBN: 1119776473

MACHINE LEARNING AND DATA SCIENCE Written and edited by a team of experts in the field, this collection of papers reflects the most up-to-date and comprehensive current state of machine learning and data science for industry, government, and academia. Machine learning (ML) and data science (DS) are very active topics with an extensive scope, both in terms of theory and applications. They have been established as an important emergent scientific field and paradigm driving research evolution in such disciplines as statistics, computing science and intelligence science, and practical transformation in such domains as science, engineering, the public sector, business, social science, and lifestyle. Simultaneously, their applications provide important challenges that can often be addressed only with innovative machine learning and data science algorithms. These algorithms encompass the larger areas of artificial intelligence, data analytics, machine learning, pattern recognition, natural language understanding, and big data manipulation. They also tackle related new scientific challenges, ranging from data capture, creation, storage, retrieval, sharing, analysis, optimization, and visualization, to integrative analysis across heterogeneous and interdependent complex resources for better decision-making, collaboration, and, ultimately, value creation.