Data Science for Neuroimaging

Data Science for Neuroimaging
Author: Ariel Rokem
Publisher: Princeton University Press
Total Pages: 393
Release: 2023-11-07
Genre: Science
ISBN: 0691222746

Data science methods and tools—including programming, data management, visualization, and machine learning—and their application to neuroimaging research As neuroimaging turns toward data-intensive discovery, researchers in the field must learn to access, manage, and analyze datasets at unprecedented scales. Concerns about reproducibility and increased rigor in reporting of scientific results also demand higher standards of computational practice. This book offers neuroimaging researchers an introduction to data science, presenting methods, tools, and approaches that facilitate automated, reproducible, and scalable analysis and understanding of data. Through guided, hands-on explorations of openly available neuroimaging datasets, the book explains such elements of data science as programming, data management, visualization, and machine learning, and describes their application to neuroimaging. Readers will come away with broadly relevant data science skills that they can easily translate to their own questions. • Fills the need for an authoritative resource on data science for neuroimaging researchers • Strong emphasis on programming • Provides extensive code examples written in the Python programming language • Draws on openly available neuroimaging datasets for examples • Written entirely in the Jupyter notebook format, so the code examples can be executed, modified, and re-executed as part of the learning process

Handbook of Neuroimaging Data Analysis

Handbook of Neuroimaging Data Analysis
Author: Hernando Ombao
Publisher: CRC Press
Total Pages: 702
Release: 2016-11-18
Genre: Mathematics
ISBN: 1482220989

This book explores various state-of-the-art aspects behind the statistical analysis of neuroimaging data. It examines the development of novel statistical approaches to model brain data. Designed for researchers in statistics, biostatistics, computer science, cognitive science, computer engineering, biomedical engineering, applied mathematics, physics, and radiology, the book can also be used as a textbook for graduate-level courses in statistics and biostatistics or as a self-study reference for Ph.D. students in statistics, biostatistics, psychology, neuroscience, and computer science.

Neural Data Science

Neural Data Science
Author: Erik Lee Nylen
Publisher: Academic Press
Total Pages: 370
Release: 2017-02-24
Genre: Science
ISBN: 012804098X

A Primer with MATLAB® and PythonTM present important information on the emergence of the use of Python, a more general purpose option to MATLAB, the preferred computation language for scientific computing and analysis in neuroscience. This book addresses the snake in the room by providing a beginner's introduction to the principles of computation and data analysis in neuroscience, using both Python and MATLAB, giving readers the ability to transcend platform tribalism and enable coding versatility. - Includes discussions of both MATLAB and Python in parallel - Introduces the canonical data analysis cascade, standardizing the data analysis flow - Presents tactics that strategically, tactically, and algorithmically help improve the organization of code

The Statistical Analysis of Functional MRI Data

The Statistical Analysis of Functional MRI Data
Author: Nicole Lazar
Publisher: Springer Science & Business Media
Total Pages: 302
Release: 2008-06-10
Genre: Medical
ISBN: 0387781919

The study of brain function is one of the most fascinating pursuits of m- ern science. Functional neuroimaging is an important component of much of the current research in cognitive, clinical, and social psychology. The exci- ment of studying the brain is recognized in both the popular press and the scienti?c community. In the pages of mainstream publications, including The New York Times and Wired, readers can learn about cutting-edge research into topics such as understanding how customers react to products and - vertisements (“If your brain has a ‘buy button,’ what pushes it?”, The New York Times,October19,2004),howviewersrespondtocampaignads(“Using M. R. I. ’s to see politics on the brain,” The New York Times, April 20, 2004; “This is your brain on Hillary: Political neuroscience hits new low,” Wired, November 12,2007),howmen and womenreactto sexualstimulation (“Brain scans arouse researchers,”Wired, April 19, 2004), distinguishing lies from the truth (“Duped,” The New Yorker, July 2, 2007; “Woman convicted of child abuse hopes fMRI can prove her innocence,” Wired, November 5, 2007), and even what separates “cool” people from “nerds” (“If you secretly like Michael Bolton, we’ll know,” Wired, October 2004). Reports on pathologies such as autism, in which neuroimaging plays a large role, are also common (for - stance, a Time magazine cover story from May 6, 2002, entitled “Inside the world of autism”).

Machine Learning in Clinical Neuroimaging

Machine Learning in Clinical Neuroimaging
Author: Ahmed Abdulkadir
Publisher: Springer Nature
Total Pages: 185
Release: 2021-09-22
Genre: Computers
ISBN: 3030875865

This book constitutes the refereed proceedings of the 4th International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2021, held on September 27, 2021, in conjunction with MICCAI 2021. The workshop was held virtually due to the COVID-19 pandemic. The 17 papers presented in this book were carefully reviewed and selected from 27 submissions. They were organized in topical sections named: computational anatomy and brain networks and time series.

Handbook of Functional MRI Data Analysis

Handbook of Functional MRI Data Analysis
Author: Russell A. Poldrack
Publisher: Cambridge University Press
Total Pages: 0
Release: 2024-02-08
Genre: Medical
ISBN: 9781009481168

Functional magnetic resonance imaging (fMRI) has become the most popular method for imaging brain function. Handbook for Functional MRI Data Analysis provides a comprehensive and practical introduction to the methods used for fMRI data analysis. Using minimal jargon, this book explains the concepts behind processing fMRI data, focusing on the techniques that are most commonly used in the field. This book provides background about the methods employed by common data analysis packages including FSL, SPM, and AFNI. Some of the newest cutting-edge techniques, including pattern classification analysis, connectivity modeling, and resting state network analysis, are also discussed. Readers of this book, whether newcomers to the field or experienced researchers, will obtain a deep and effective knowledge of how to employ fMRI analysis to ask scientific questions and become more sophisticated users of fMRI analysis software.

Electrical Neuroimaging

Electrical Neuroimaging
Author: Christoph M. Michel
Publisher: Cambridge University Press
Total Pages: 249
Release: 2009-07-23
Genre: Medical
ISBN: 0521879795

An authoritative reference giving a systematic overview of new electrical imaging methods. Provides a comprehensive and sound introduction to the basics of multichannel recording of EEG and event-related potential (ERP) data, as well as spatio-temporal analysis of the potential fields. Chapters include practical examples of illustrative studies and approaches.

Machine Learning and Medical Imaging

Machine Learning and Medical Imaging
Author: Guorong Wu
Publisher: Academic Press
Total Pages: 514
Release: 2016-08-11
Genre: Computers
ISBN: 0128041145

Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, and clinicians. - Demonstrates the application of cutting-edge machine learning techniques to medical imaging problems - Covers an array of medical imaging applications including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics - Features self-contained chapters with a thorough literature review - Assesses the development of future machine learning techniques and the further application of existing techniques

Introduction to Neuroimaging Analysis

Introduction to Neuroimaging Analysis
Author: Mark Jenkinson
Publisher: Oxford University Press
Total Pages: 277
Release: 2018
Genre: Medical
ISBN: 0198816308

This accessible primer gives an introduction to the wide array of MRI-based neuroimaging methods that are used in research. It provides an overview of the fundamentals of what different MRI modalities measure, what artifacts commonly occur, the essentials of the analysis, and common 'pipelines'.

Statistical and Computational Methods in Brain Image Analysis

Statistical and Computational Methods in Brain Image Analysis
Author: Moo K. Chung
Publisher: CRC Press
Total Pages: 436
Release: 2013-07-23
Genre: Mathematics
ISBN: 1439836353

The massive amount of nonstandard high-dimensional brain imaging data being generated is often difficult to analyze using current techniques. This challenge in brain image analysis requires new computational approaches and solutions. But none of the research papers or books in the field describe the quantitative techniques with detailed illustrations of actual imaging data and computer codes. Using MATLAB® and case study data sets, Statistical and Computational Methods in Brain Image Analysis is the first book to explicitly explain how to perform statistical analysis on brain imaging data. The book focuses on methodological issues in analyzing structural brain imaging modalities such as MRI and DTI. Real imaging applications and examples elucidate the concepts and methods. In addition, most of the brain imaging data sets and MATLAB codes are available on the author’s website. By supplying the data and codes, this book enables researchers to start their statistical analyses immediately. Also suitable for graduate students, it provides an understanding of the various statistical and computational methodologies used in the field as well as important and technically challenging topics.