Data Science for Business and Decision Making

Data Science for Business and Decision Making
Author: Luiz Paulo Favero
Publisher: Academic Press
Total Pages: 1246
Release: 2019-04-11
Genre: Business & Economics
ISBN: 0128112174

Data Science for Business and Decision Making covers both statistics and operations research while most competing textbooks focus on one or the other. As a result, the book more clearly defines the principles of business analytics for those who want to apply quantitative methods in their work. Its emphasis reflects the importance of regression, optimization and simulation for practitioners of business analytics. Each chapter uses a didactic format that is followed by exercises and answers. Freely-accessible datasets enable students and professionals to work with Excel, Stata Statistical Software®, and IBM SPSS Statistics Software®. - Combines statistics and operations research modeling to teach the principles of business analytics - Written for students who want to apply statistics, optimization and multivariate modeling to gain competitive advantages in business - Shows how powerful software packages, such as SPSS and Stata, can create graphical and numerical outputs

The Decision Maker's Handbook to Data Science

The Decision Maker's Handbook to Data Science
Author: Stylianos Kampakis
Publisher: Apress
Total Pages: 154
Release: 2019-11-26
Genre: Computers
ISBN: 1484254945

Data science is expanding across industries at a rapid pace, and the companies first to adopt best practices will gain a significant advantage. To reap the benefits, decision makers need to have a confident understanding of data science and its application in their organization. It is easy for novices to the subject to feel paralyzed by intimidating buzzwords, but what many don’t realize is that data science is in fact quite multidisciplinary—useful in the hands of business analysts, communications strategists, designers, and more. With the second edition of The Decision Maker’s Handbook to Data Science, you will learn how to think like a veteran data scientist and approach solutions to business problems in an entirely new way. Author Stylianos Kampakis provides you with the expertise and tools required to develop a solid data strategy that is continuously effective. Ethics and legal issues surrounding data collection and algorithmic bias are some common pitfalls that Kampakis helps you avoid, while guiding you on the path to build a thriving data science culture at your organization. This updated and revised second edition, includes plenty of case studies, tools for project assessment, and expanded content for hiring and managing data scientists Data science is a language that everyone at a modern company should understand across departments. Friction in communication arises most often when management does not connect with what a data scientist is doing or how impactful data collection and storage can be for their organization. The Decision Maker’s Handbook to Data Science bridges this gap and readies you for both the present and future of your workplace in this engaging, comprehensive guide. What You Will Learn Understand how data science can be used within your business. Recognize the differences between AI, machine learning, and statistics.Become skilled at thinking like a data scientist, without being one.Discover how to hire and manage data scientists.Comprehend how to build the right environment in order to make your organization data-driven. Who This Book Is For Startup founders, product managers, higher level managers, and any other non-technical decision makers who are thinking to implement data science in their organization and hire data scientists. A secondary audience includes people looking for a soft introduction into the subject of data science.

Data Science for Decision Makers & Data Professionals

Data Science for Decision Makers & Data Professionals
Author: Eric Van Der Steen
Publisher: Passionned Publishers
Total Pages: 432
Release: 2021-03-15
Genre:
ISBN: 9789082809176

Learn how to embed data science, Big Data and AI in your organization's decision-making process and make your organization more data-driven, profitable, and intelligent in 10 steps. Book description This book covers every aspect of the implementation of data science, from the algorithms that make your decisions more refined, effective and faster to the people, skills, culture, and mindset required to make it happen. How do you set the right KPIs and targets? How are the best data-driven organizations structured? Why do you need a data warehouse or data lake? How do you manage a data science project? This book tackles every question relevant to implementing data science. Many organizations start by collecting data without a goal, but that data science approach is doomed to fail. This book takes you through the process of implementing data science from the ground floor all the way to the top. It all starts with the question: what do we want to achieve? It covers all the subsequent steps on a macro and micro level, from the process of registering data, to processing it, to the organization's response. All the relevant data science techniques and technologies are discussed, from algorithms and AI to the right management strategies. Based on many practical case studies and best practices, this book reveals what works and what doesn't. Benefit from the author's many years of experience in making organizations more intelligent and data-driven as a consultant and an educator. What you will learn - The most important benefits of data science. - The essential aspects of decision making and the role of data science. - How to determine the right KPIs and use them to manage effectively. - How to turn data into knowledge and information. - How to make your organization more agile. - The many types of algorithms that can be used to make more effective decisions on every level. - How to manage data science projects - who and what do you need to effectively implement data science? - How to design a data science roadmap. - And much, much more. Who is this book for This book is for every manager or professional, and all those who want to learn how to embed the effective use of data science in every facet of the organization. This comprehensive management handbook is a must-read for (business) consultants, business managers, Chief Data Officers (CDOs), CIOs, and other executives, project managers, Data Science consultants, Data Scientists, AI consultants, (business) controllers, quality managers, and BI consultants.

Data Science for Economics and Finance

Data Science for Economics and Finance
Author: Sergio Consoli
Publisher: Springer Nature
Total Pages: 357
Release: 2021
Genre: Application software
ISBN: 3030668916

This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.

Management Decision-Making, Big Data and Analytics

Management Decision-Making, Big Data and Analytics
Author: Simone Gressel
Publisher: SAGE
Total Pages: 354
Release: 2020-10-12
Genre: Business & Economics
ISBN: 1529738288

Accessible and concise, this exciting new textbook examines data analytics from a managerial and organizational perspective and looks at how they can help managers become more effective decision-makers. The book successfully combines theory with practical application, featuring case studies, examples and a ‘critical incidents’ feature that make these topics engaging and relevant for students of business and management. The book features chapters on cutting-edge topics, including: • Big data • Analytics • Managing emerging technologies and decision-making • Managing the ethics, security, privacy and legal aspects of data-driven decision-making The book is accompanied by an Instructor’s Manual, PowerPoint slides and access to journal articles. Suitable for management students studying business analytics and decision-making at undergraduate, postgraduate and MBA levels.

Data Science for Business

Data Science for Business
Author: Foster Provost
Publisher: "O'Reilly Media, Inc."
Total Pages: 506
Release: 2013-07-27
Genre: Computers
ISBN: 144937428X

Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates

Big Data on Campus

Big Data on Campus
Author: Karen L. Webber
Publisher: Johns Hopkins University Press
Total Pages: 337
Release: 2020-11-03
Genre: Education
ISBN: 1421439034

Webber, Henry Y. Zheng, Ying Zhou

Applied Data Science

Applied Data Science
Author: Martin Braschler
Publisher: Springer
Total Pages: 464
Release: 2019-06-13
Genre: Computers
ISBN: 3030118215

This book has two main goals: to define data science through the work of data scientists and their results, namely data products, while simultaneously providing the reader with relevant lessons learned from applied data science projects at the intersection of academia and industry. As such, it is not a replacement for a classical textbook (i.e., it does not elaborate on fundamentals of methods and principles described elsewhere), but systematically highlights the connection between theory, on the one hand, and its application in specific use cases, on the other. With these goals in mind, the book is divided into three parts: Part I pays tribute to the interdisciplinary nature of data science and provides a common understanding of data science terminology for readers with different backgrounds. These six chapters are geared towards drawing a consistent picture of data science and were predominantly written by the editors themselves. Part II then broadens the spectrum by presenting views and insights from diverse authors – some from academia and some from industry, ranging from financial to health and from manufacturing to e-commerce. Each of these chapters describes a fundamental principle, method or tool in data science by analyzing specific use cases and drawing concrete conclusions from them. The case studies presented, and the methods and tools applied, represent the nuts and bolts of data science. Finally, Part III was again written from the perspective of the editors and summarizes the lessons learned that have been distilled from the case studies in Part II. The section can be viewed as a meta-study on data science across a broad range of domains, viewpoints and fields. Moreover, it provides answers to the question of what the mission-critical factors for success in different data science undertakings are. The book targets professionals as well as students of data science: first, practicing data scientists in industry and academia who want to broaden their scope and expand their knowledge by drawing on the authors’ combined experience. Second, decision makers in businesses who face the challenge of creating or implementing a data-driven strategy and who want to learn from success stories spanning a range of industries. Third, students of data science who want to understand both the theoretical and practical aspects of data science, vetted by real-world case studies at the intersection of academia and industry.

Data Science Without Makeup

Data Science Without Makeup
Author: Mikhail Zhilkin
Publisher: CRC Press
Total Pages: 195
Release: 2021-11-01
Genre: Computers
ISBN: 1000464806

- The book shows you what 'data science' actually is and focuses uniquely on how to minimize the negatives of (bad) data science - It discusses the actual place of data science in a variety of companies, and what that means for the process of data science - It provides ‘how to’ advice to both individuals and managers - It takes a critical approach to data science and provides widely-relatable examples

Business Data Science: Combining Machine Learning and Economics to Optimize, Automate, and Accelerate Business Decisions

Business Data Science: Combining Machine Learning and Economics to Optimize, Automate, and Accelerate Business Decisions
Author: Matt Taddy
Publisher: McGraw Hill Professional
Total Pages: 350
Release: 2019-08-23
Genre: Business & Economics
ISBN: 1260452786

Use machine learning to understand your customers, frame decisions, and drive value The business analytics world has changed, and Data Scientists are taking over. Business Data Science takes you through the steps of using machine learning to implement best-in-class business data science. Whether you are a business leader with a desire to go deep on data, or an engineer who wants to learn how to apply Machine Learning to business problems, you’ll find the information, insight, and tools you need to flourish in today’s data-driven economy. You’ll learn how to: Use the key building blocks of Machine Learning: sparse regularization, out-of-sample validation, and latent factor and topic modeling Understand how use ML tools in real world business problems, where causation matters more that correlation Solve data science programs by scripting in the R programming language Today’s business landscape is driven by data and constantly shifting. Companies live and die on their ability to make and implement the right decisions quickly and effectively. Business Data Science is about doing data science right. It’s about the exciting things being done around Big Data to run a flourishing business. It’s about the precepts, principals, and best practices that you need know for best-in-class business data science.