Data Modeling With Snowflake
Download Data Modeling With Snowflake full books in PDF, epub, and Kindle. Read online free Data Modeling With Snowflake ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Serge Gershkovich |
Publisher | : Packt Publishing Ltd |
Total Pages | : 324 |
Release | : 2023-05-31 |
Genre | : Computers |
ISBN | : 1837632782 |
Discover how Snowflake's unique objects and features can be used to leverage universal modeling techniques through real-world examples and SQL recipes Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn core modeling techniques tied to practical examples using native Snowflake architecture Adopt a universal modeling language to communicate business value to functional teams Go beyond physical modeling with SQL recipes to transform and shape your Snowflake data Book DescriptionThe Snowflake Data Cloud is one of the fastest-growing platforms for data warehousing and application workloads. Snowflake's scalable, cloud-native architecture and expansive set of features and objects enables you to deliver data solutions quicker than ever before. Yet, we must ensure that these solutions are developed using recommended design patterns and accompanied by documentation that’s easily accessible to everyone in the organization. This book will help you get familiar with simple and practical data modeling frameworks that accelerate agile design and evolve with the project from concept to code. These universal principles have helped guide database design for decades, and this book pairs them with unique Snowflake-native objects and examples like never before – giving you a two-for-one crash course in theory as well as direct application. By the end of this Snowflake book, you’ll have learned how to leverage Snowflake’s innovative features, such as time travel, zero-copy cloning, and change-data-capture, to create cost-effective, efficient designs through time-tested modeling principles that are easily digestible when coupled with real-world examples.What you will learn Discover the time-saving benefits and applications of data modeling Learn about Snowflake’s cloud-native architecture and its features Understand and apply modeling techniques using Snowflake objects Universal modeling concepts and language through Snowflake objects Get comfortable reading and transforming semistructured data Learn directly with pre-built recipes and examples Learn to apply modeling frameworks from Star to Data Vault Who this book is for This book is for developers working with SQL who are looking to build a strong foundation in modeling best practices and gain an understanding of where they can be effectively applied to save time and effort. Whether you’re an ace in SQL logic or starting out in database design, this book will equip you with the practical foundations of data modeling to guide you on your data journey with Snowflake. Developers who’ve recently discovered Snowflake will be able to uncover its core features and learn to incorporate them into universal modeling frameworks.
Author | : Hamid Mahmood Qureshi |
Publisher | : Packt Publishing Ltd |
Total Pages | : 330 |
Release | : 2021-02-25 |
Genre | : Computers |
ISBN | : 1800560184 |
Develop modern solutions with Snowflake's unique architecture and integration capabilities; process bulk and real-time data into a data lake; and leverage time travel, cloning, and data-sharing features to optimize data operations Key Features Build and scale modern data solutions using the all-in-one Snowflake platform Perform advanced cloud analytics for implementing big data and data science solutions Make quicker and better-informed business decisions by uncovering key insights from your data Book Description Snowflake is a unique cloud-based data warehousing platform built from scratch to perform data management on the cloud. This book introduces you to Snowflake's unique architecture, which places it at the forefront of cloud data warehouses. You'll explore the compute model available with Snowflake, and find out how Snowflake allows extensive scaling through the virtual warehouses. You will then learn how to configure a virtual warehouse for optimizing cost and performance. Moving on, you'll get to grips with the data ecosystem and discover how Snowflake integrates with other technologies for staging and loading data. As you progress through the chapters, you will leverage Snowflake's capabilities to process a series of SQL statements using tasks to build data pipelines and find out how you can create modern data solutions and pipelines designed to provide high performance and scalability. You will also get to grips with creating role hierarchies, adding custom roles, and setting default roles for users before covering advanced topics such as data sharing, cloning, and performance optimization. By the end of this Snowflake book, you will be well-versed in Snowflake's architecture for building modern analytical solutions and understand best practices for solving commonly faced problems using practical recipes. What you will learn Get to grips with data warehousing techniques aligned with Snowflake's cloud architecture Broaden your skills as a data warehouse designer to cover the Snowflake ecosystem Transfer skills from on-premise data warehousing to the Snowflake cloud analytics platform Optimize performance and costs associated with a Snowflake solution Stage data on object stores and load it into Snowflake Secure data and share it efficiently for access Manage transactions and extend Snowflake using stored procedures Extend cloud data applications using Spark Connector Who this book is for This book is for data warehouse developers, data analysts, database administrators, and anyone involved in designing, implementing, and optimizing a Snowflake data warehouse. Knowledge of data warehousing and database and cloud concepts will be useful. Basic familiarity with Snowflake is beneficial, but not necessary.
Author | : Ralph Kimball |
Publisher | : John Wiley & Sons |
Total Pages | : 464 |
Release | : 2011-08-08 |
Genre | : Computers |
ISBN | : 1118082141 |
This old edition was published in 2002. The current and final edition of this book is The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition which was published in 2013 under ISBN: 9781118530801. The authors begin with fundamental design recommendations and gradually progress step-by-step through increasingly complex scenarios. Clear-cut guidelines for designing dimensional models are illustrated using real-world data warehouse case studies drawn from a variety of business application areas and industries, including: Retail sales and e-commerce Inventory management Procurement Order management Customer relationship management (CRM) Human resources management Accounting Financial services Telecommunications and utilities Education Transportation Health care and insurance By the end of the book, you will have mastered the full range of powerful techniques for designing dimensional databases that are easy to understand and provide fast query response. You will also learn how to create an architected framework that integrates the distributed data warehouse using standardized dimensions and facts.
Author | : Len Silverston |
Publisher | : John Wiley & Sons |
Total Pages | : 572 |
Release | : 2011-08-08 |
Genre | : Computers |
ISBN | : 111808232X |
A quick and reliable way to build proven databases for core business functions Industry experts raved about The Data Model Resource Book when it was first published in March 1997 because it provided a simple, cost-effective way to design databases for core business functions. Len Silverston has now revised and updated the hugely successful 1st Edition, while adding a companion volume to take care of more specific requirements of different businesses. This updated volume provides a common set of data models for specific core functions shared by most businesses like human resources management, accounting, and project management. These models are standardized and are easily replicated by developers looking for ways to make corporate database development more efficient and cost effective. This guide is the perfect complement to The Data Model Resource CD-ROM, which is sold separately and provides the powerful design templates discussed in the book in a ready-to-use electronic format. A free demonstration CD-ROM is available with each copy of the print book to allow you to try before you buy the full CD-ROM.
Author | : Frank Slootman |
Publisher | : AuthorHouse |
Total Pages | : 200 |
Release | : 2020-12-18 |
Genre | : Business & Economics |
ISBN | : 1728373069 |
The rise of the Data Cloud is ushering in a new era of computing. The world’s digital data is mass migrating to the cloud, where it can be more effectively integrated, managed, and mobilized. The data cloud eliminates data siloes and enables data sharing with business partners, capitalizing on data network effects. It democratizes data analytics, making the most sophisticated data science tools accessible to organizations of all sizes. Data exchanges enable businesses to discover, explore, and easily purchase or sell data—opening up new revenue streams. Business leaders have long dreamed of data driving their organizations. Now, thanks to the Data Cloud, nothing stands in their way.
Author | : Dmitry Anoshin |
Publisher | : Apress |
Total Pages | : 270 |
Release | : 2019-12-20 |
Genre | : Computers |
ISBN | : 1484253280 |
Explore the modern market of data analytics platforms and the benefits of using Snowflake computing, the data warehouse built for the cloud. With the rise of cloud technologies, organizations prefer to deploy their analytics using cloud providers such as Amazon Web Services (AWS), Microsoft Azure, or Google Cloud Platform. Cloud vendors are offering modern data platforms for building cloud analytics solutions to collect data and consolidate into single storage solutions that provide insights for business users. The core of any analytics framework is the data warehouse, and previously customers did not have many choices of platform to use. Snowflake was built specifically for the cloud and it is a true game changer for the analytics market. This book will help onboard you to Snowflake, present best practices to deploy, and use the Snowflake data warehouse. In addition, it covers modern analytics architecture and use cases. It provides use cases of integration with leading analytics software such as Matillion ETL, Tableau, and Databricks. Finally, it covers migration scenarios for on-premise legacy data warehouses. What You Will Learn Know the key functionalities of Snowflake Set up security and access with cluster Bulk load data into Snowflake using the COPY command Migrate from a legacy data warehouse to Snowflake integrate the Snowflake data platform with modern business intelligence (BI) and data integration tools Who This Book Is For Those working with data warehouse and business intelligence (BI) technologies, and existing and potential Snowflake users
Author | : Daniel Linstedt |
Publisher | : Morgan Kaufmann |
Total Pages | : 684 |
Release | : 2015-09-15 |
Genre | : Computers |
ISBN | : 0128026480 |
The Data Vault was invented by Dan Linstedt at the U.S. Department of Defense, and the standard has been successfully applied to data warehousing projects at organizations of different sizes, from small to large-size corporations. Due to its simplified design, which is adapted from nature, the Data Vault 2.0 standard helps prevent typical data warehousing failures. "Building a Scalable Data Warehouse" covers everything one needs to know to create a scalable data warehouse end to end, including a presentation of the Data Vault modeling technique, which provides the foundations to create a technical data warehouse layer. The book discusses how to build the data warehouse incrementally using the agile Data Vault 2.0 methodology. In addition, readers will learn how to create the input layer (the stage layer) and the presentation layer (data mart) of the Data Vault 2.0 architecture including implementation best practices. Drawing upon years of practical experience and using numerous examples and an easy to understand framework, Dan Linstedt and Michael Olschimke discuss: - How to load each layer using SQL Server Integration Services (SSIS), including automation of the Data Vault loading processes. - Important data warehouse technologies and practices. - Data Quality Services (DQS) and Master Data Services (MDS) in the context of the Data Vault architecture. - Provides a complete introduction to data warehousing, applications, and the business context so readers can get-up and running fast - Explains theoretical concepts and provides hands-on instruction on how to build and implement a data warehouse - Demystifies data vault modeling with beginning, intermediate, and advanced techniques - Discusses the advantages of the data vault approach over other techniques, also including the latest updates to Data Vault 2.0 and multiple improvements to Data Vault 1.0
Author | : Panos Alexopoulos |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 332 |
Release | : 2020-08-19 |
Genre | : Computers |
ISBN | : 1492054224 |
What value does semantic data modeling offer? As an information architect or data science professional, let’s say you have an abundance of the right data and the technology to extract business gold—but you still fail. The reason? Bad data semantics. In this practical and comprehensive field guide, author Panos Alexopoulos takes you on an eye-opening journey through semantic data modeling as applied in the real world. You’ll learn how to master this craft to increase the usability and value of your data and applications. You’ll also explore the pitfalls to avoid and dilemmas to overcome for building high-quality and valuable semantic representations of data. Understand the fundamental concepts, phenomena, and processes related to semantic data modeling Examine the quirks and challenges of semantic data modeling and learn how to effectively leverage the available frameworks and tools Avoid mistakes and bad practices that can undermine your efforts to create good data models Learn about model development dilemmas, including representation, expressiveness and content, development, and governance Organize and execute semantic data initiatives in your organization, tackling technical, strategic, and organizational challenges
Author | : James Densmore |
Publisher | : O'Reilly Media |
Total Pages | : 277 |
Release | : 2021-02-10 |
Genre | : Computers |
ISBN | : 1492087807 |
Data pipelines are the foundation for success in data analytics. Moving data from numerous diverse sources and transforming it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as batch versus streaming data ingestion and build versus buy. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support analytics and reporting needs Considerations for pipeline maintenance, testing, and alerting
Author | : Paulraj Ponniah |
Publisher | : John Wiley & Sons |
Total Pages | : 460 |
Release | : 2007-06-30 |
Genre | : Computers |
ISBN | : 0470141018 |
The purpose of this book is to provide a practical approach for IT professionals to acquire the necessary knowledge and expertise in data modeling to function effectively. It begins with an overview of basic data modeling concepts, introduces the methods and techniques, provides a comprehensive case study to present the details of the data model components, covers the implementation of the data model with emphasis on quality components, and concludes with a presentation of a realistic approach to data modeling. It clearly describes how a generic data model is created to represent truly the enterprise information requirements.