Crystal Symmetry Lattice Vibrations And Optical Spectroscopy Of Solids A Group Theoretical Approach
Download Crystal Symmetry Lattice Vibrations And Optical Spectroscopy Of Solids A Group Theoretical Approach full books in PDF, epub, and Kindle. Read online free Crystal Symmetry Lattice Vibrations And Optical Spectroscopy Of Solids A Group Theoretical Approach ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Baldassare Di Bartolo |
Publisher | : World Scientific |
Total Pages | : 534 |
Release | : 2014-05-21 |
Genre | : Science |
ISBN | : 9814579238 |
This book provides a comprehensive treatment of the two fundamental aspects of a solid that determine its physical properties: lattice structure and atomic vibrations (phonons). The elements of group theory are extensively developed and used as a tool to show how the symmetry of a solid and the vibrations of the atoms in the solid lead to the physical properties of the material. The uses of different types of spectroscopy techniques that elucidate the lattice structure of a solid and the normal vibrational modes of the atoms in the solid are described. The interaction of light with solids (optical spectroscopy) is described in detail including how lattice symmetry and phonons affect the spectral properties and how spectral properties provide information about the material's symmetry and normal modes of lattice vibrations. The effects of point defects (doping) on the lattice symmetry and atomic vibrations and thus the spectral properties are discussed and used to show how material symmetry and lattice vibrations are critical in determining the properties of solid state lasers.
Author | : Nikolai B. Melnikov |
Publisher | : Springer Nature |
Total Pages | : 343 |
Release | : 2023-01-01 |
Genre | : Science |
ISBN | : 3031139917 |
This book is devoted to the construction of space group representations, their tabulation, and illustration of their use. Representation theory of space groups has a wide range of applications in modern physics and chemistry, including studies of electron and phonon spectra, structural and magnetic phase transitions, spectroscopy, neutron scattering, and superconductivity. The book presents a clear and practical method of deducing the matrices of all irreducible representations, including double-valued, and tabulates the matrices of irreducible projective representations for all 32 crystallographic point groups. One obtains the irreducible representations of all 230 space groups by multiplying the matrices presented in these compact and convenient to use tables by easily computed factors. A number of applications to the electronic band structure calculations are illustrated through real-life examples of different crystal structures. The book's content is accessible to both graduate and advanced undergraduate students with elementary knowledge of group theory and is useful to a wide range of experimentalists and theorists in materials and solid-state physics.
Author | : Baldassare Di Bartolo |
Publisher | : Springer |
Total Pages | : 564 |
Release | : 2017-02-15 |
Genre | : Science |
ISBN | : 9402408509 |
This book provides a comprehensive overview of nano-optics, including basic theory, experiment and applications, particularly in nanofabrication and optical characterization. The contributions clearly demonstrate how advances in nano-optics and photonics have stimulated progress in nanoscience and -fabrication, and vice versa. Their expert authors address topics such as three-dimensional optical lithography and microscopy beyond the Abbe diffraction limit, optical diagnostics and sensing, optical data- and telecommunications, energy-efficient lighting, and efficient solar energy conversion. Nano-optics emerges as a key enabling technology of the 21st century. This work will appeal to a wide readership, from physics through chemistry, to biology and engineering. The contributions that appear in this volume were presented at a NATO Advanced Study Institute held in Erice, 4-19 July, 2015. Re Ch. 73 - Structure and Luminescence Properties of Nanofluorapatite Activated with Eu3+ Ions Synthesized by Hydrothermal Method, pp 567-569: The authors would like to acknowledge the National Science Centre (NSC) for financial support within the Project ‘Preparation and characterization of nanoapatites doped with rare earth ions and their biocomposites’ UMO-2012/05/E/ST5/03904
Author | : Baldassare Di Bartolo |
Publisher | : Springer |
Total Pages | : 460 |
Release | : 2018-09-19 |
Genre | : Science |
ISBN | : 9402415440 |
This book brings together more closely researchers working in the two fields of quantum optics and nano-optics and provides a general overview of the main topics of interest in applied and fundamental research. The contributions cover, for example, single-photon emitters and emitters of entangled photon pairs based on epitaxially grown semiconductor quantum dots, nitrogen vacancy centers in diamond as single-photon emitters, coupled quantum bits based on trapped ions, integrated waveguide superconducting nanowire single-photon detectors, quantum nano-plasmonics, nanosensing, quantum aspects of biophotonics and quantum metamaterials. The articles span the bridge from pedagogical introductions on the fundamental principles to the current state-of-the-art, and are authored by pioneers and leaders in the field. Numerical simulations are presented as a powerful tool to gain insight into the physical behavior of nanophotonic systems and provide a critical complement to experimental investigations and design of devices.
Author | : William G. Fateley |
Publisher | : John Wiley & Sons |
Total Pages | : 248 |
Release | : 1972 |
Genre | : Mathematics |
ISBN | : |
Author | : Baldassare Di Bartolo |
Publisher | : World Scientific Publishing Company |
Total Pages | : 631 |
Release | : 2010-06-30 |
Genre | : Science |
ISBN | : 9813107839 |
Optical Interactions in Solids presents an extensive and unified treatment of the basic principles of the optical properties of solids. It provides a theoretical background to workers in the field of laser physics and absorption and fluorescence spectroscopy of solid state materials. The book is a comprehensive coverage of the subject and is systematically and didactically organized. The level of presentation is such that it will benefit and interest both advanced students and research workers. Group theory — which is useful throughout — is introduced early in the book advocating the scientific community to overcome the reluctance to employ this powerful method. Consistent emphasis is given throughout the book to the relevance of symmetry and to detailed calculations. Different subjects as various as quantum theory of radiation field, thermal vibrations of molecules and crystals and covalent bonding are brought together in a unified treatment which requires knowledge of all these topics and this points to the interpretation of the spectral properties of solids. The content of this work could be used as a two term graduate course in solid state spectroscopy.br>
Author | : Charles P. Poole Jr. |
Publisher | : Academic Press |
Total Pages | : 1658 |
Release | : 2004-03-11 |
Genre | : Technology & Engineering |
ISBN | : 0080545238 |
This volume is a translation and revision of the Original Russian version by Baryahktar. It covers all of the main fields involved in Condensed Matter Physics, such as crystallography, electrical properties, fluids, magnetism, material properties, optics, radiation, semiconductors, and superconductivity, as well as highlights of important related subjects such as quantum mechanics, spectroscopy, and statistical mechanics. Both theoretical and experimental aspects of condensed matter are covered in detail. The entries range from very short paragraphs on topics where definitions are needed, such as Bloch's law, clathrate compound, donor, domain, Kondo lattice, mean free path, and Wigner crystal, to long discussions of more general or more comprehensive topics such as antiferromagnetism, crystal lattice dynamics, dislocations, Fermi surface, Josephson effect, luminescence, magnetic films, phase transitions and semiconductors. The main theoretical approaches to Condensed Matter Physics are explained. There are several long tables on, for example, Bravais lattices, characteristics of magnetic materials, units of physical quantities, symmetry groups. The properties of the main elements of the periodic table are given. Numerous entries not covered by standard Solid State Physics texts o Self-similarity o The adiabatic approximation o Bistability Emphasis on materials not discussed in standard texts o Activated carborn o Austenite o Bainite o Calamitics o Carbine o Delat phase o Discotics o Gunier-Preston zones o Heterodesmic structures o Heusler Alloys o Stress and strain deviators o Vicalloy · Each entry is fully cross-referenced to help tracking down all aspects of a topic under investigation Highly illustrated to clarify many concepts
Author | : Mildred Dresselhaus |
Publisher | : Springer |
Total Pages | : 521 |
Release | : 2018-01-17 |
Genre | : Science |
ISBN | : 3662559226 |
This book fills a gap between many of the basic solid state physics and materials sciencebooks that are currently available. It is written for a mixed audience of electricalengineering and applied physics students who have some knowledge of elementaryundergraduate quantum mechanics and statistical mechanics. This book, based on asuccessful course taught at MIT, is divided pedagogically into three parts: (I) ElectronicStructure, (II) Transport Properties, and (III) Optical Properties. Each topic is explainedin the context of bulk materials and then extended to low-dimensional materials whereapplicable. Problem sets review the content of each chapter to help students to understandthe material described in each of the chapters more deeply and to prepare them to masterthe next chapters.
Author | : ARULDHAS, G. |
Publisher | : PHI Learning Pvt. Ltd. |
Total Pages | : 448 |
Release | : 2007-06-09 |
Genre | : Science |
ISBN | : 9788120332157 |
Designed to serve as a textbook for postgraduate students of physics and chemistry, this second edition improves the clarity of treatment, extends the range of topics, and includes more worked examples with a view to providing all the material needed for a course in molecular spectroscopy—from first principles to the very useful spectral data that comprise figures, charts and tables. To improve the conceptual appreciation and to help students develop more positive and realistic impressions of spectroscopy, there are two new chapters—one on the spectra of atoms and the other on laser spectroscopy. The chapter on the spectra of atoms is a detailed account of the basic principles involved in molecular spectroscopy. The chapter on laser spectroscopy covers some new experimental techniques for the investigation of the structure of atoms and molecules. Additional sections on interstellar molecules, inversion vibration of ammonia molecule, fibre-coupled Raman spectrometer, Raman microscope, supersonic beams and jet-cooling have also been included. Besides worked-out examples, an abundance of review questions, and end-of-chapter problems with answers are included to aid students in testing their knowledge of the material contained in each chapter. Solutions manual containing the complete worked-out solutions to chapter-end problems is available for instructors.
Author | : Frederick Wooten |
Publisher | : Academic Press |
Total Pages | : 273 |
Release | : 2013-10-22 |
Genre | : Science |
ISBN | : 1483220761 |
Optical Properties of Solids covers the important concepts of intrinsic optical properties and photoelectric emission. The book starts by providing an introduction to the fundamental optical spectra of solids. The text then discusses Maxwell's equations and the dielectric function; absorption and dispersion; and the theory of free-electron metals. The quantum mechanical theory of direct and indirect transitions between bands; the applications of dispersion relations; and the derivation of an expression for the dielectric function in the self-consistent field approximation are also encompassed. The book further tackles current-current correlations; the fluctuation-dissipation theorem; and the effect of surface plasmons on optical properties and photoemission. People involved in the study of the optical properties of solids will find the book invaluable.