Crossed Products of $C^*$-Algebras

Crossed Products of $C^*$-Algebras
Author: Dana P. Williams
Publisher: American Mathematical Soc.
Total Pages: 546
Release: 2007
Genre: Mathematics
ISBN: 0821842420

The theory of crossed products is extremely rich and intriguing. There are applications not only to operator algebras, but to subjects as varied as noncommutative geometry and mathematical physics. This book provides a detailed introduction to this vast subject suitable for graduate students and others whose research has contact with crossed product $C*$-algebras. in addition to providing the basic definitions and results, the main focus of this book is the fine ideal structure of crossed products as revealed by the study of induced representations via the Green-Mackey-Rieffel machine. in particular, there is an in-depth analysis of the imprimitivity theorems on which Rieffel's theory of induced representations and Morita equivalence of $C*$-algebras are based. There is also a detailed treatment of the generalized Effros-Hahn conjecture and its proof due to Gootman, Rosenberg, and Sauvageot. This book is meant to be self-contained and accessible to any graduate student coming out of a first course on operator algebras. There are appendices that deal with ancillary subjects, which while not central to the subject, are nevertheless crucial for a complete understanding of the material. Some of the appendices will be of independent interest. to view another book by this author, please visit Morita Equivalence and Continuous-Trace $C*$-Algebras.

C*-Algebras by Example

C*-Algebras by Example
Author: Kenneth R. Davidson
Publisher: American Mathematical Society, Fields Institute
Total Pages: 325
Release: 2023-10-04
Genre: Mathematics
ISBN: 1470475081

The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of $K$-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty years has been based on a careful study of these special classes. While there are many books on C*-algebras and operator algebras available, this is the first one to attempt to explain the real examples that researchers use to test their hypotheses. Topics include AF algebras, Bunce–Deddens and Cuntz algebras, the Toeplitz algebra, irrational rotation algebras, group C*-algebras, discrete crossed products, abelian C*-algebras (spectral theory and approximate unitary equivalence) and extensions. It also introduces many modern concepts and results in the subject such as real rank zero algebras, topological stable rank, quasidiagonality, and various new constructions. These notes were compiled during the author's participation in the special year on C*-algebras at The Fields Institute for Research in Mathematical Sciences during the 1994–1995 academic year. The field of C*-algebras touches upon many other areas of mathematics such as group representations, dynamical systems, physics, $K$-theory, and topology. The variety of examples offered in this text expose the student to many of these connections. Graduate students with a solid course in functional analysis should be able to read this book. This should prepare them to read much of the current literature. This book is reasonably self-contained, and the author has provided results from other areas when necessary.

Operator Algebras and Dynamics: Groupoids, Crossed Products, and Rokhlin Dimension

Operator Algebras and Dynamics: Groupoids, Crossed Products, and Rokhlin Dimension
Author: Aidan Sims
Publisher: Springer Nature
Total Pages: 164
Release: 2020-06-22
Genre: Mathematics
ISBN: 3030397130

This book collects the notes of the lectures given at the Advanced Course on Crossed Products, Groupoids, and Rokhlin dimension, that took place at the Centre de Recerca Matemàtica (CRM) from March 13 to March 17, 2017. The notes consist of three series of lectures. The first one was given by Dana Williams (Dartmouth College), and served as an introduction to crossed products of C*-algebras and the study of their structure. The second series of lectures was delivered by Aidan Sims (Wollongong), who gave an overview of the theory of topological groupoids (as a model for groups and group actions) and groupoid C*-algebras, with particular emphasis on the case of étale groupoids. Finally, the last series was delivered by Gábor Szabó (Copenhagen), and consisted of an introduction to Rokhlin type properties (mostly centered around the work of Hirshberg, Winter and Zacharias) with hints to the more advanced theory related to groupoids.

Crossed Products of Operator Algebras

Crossed Products of Operator Algebras
Author: Elias G. Katsoulis
Publisher: American Mathematical Soc.
Total Pages: 100
Release: 2019-04-10
Genre: Mathematics
ISBN: 1470435454

The authors study crossed products of arbitrary operator algebras by locally compact groups of completely isometric automorphisms. They develop an abstract theory that allows for generalizations of many of the fundamental results from the selfadjoint theory to our context. They complement their generic results with the detailed study of many important special cases. In particular they study crossed products of tensor algebras, triangular AF algebras and various associated C -algebras. They make contributions to the study of C -envelopes, semisimplicity, the semi-Dirichlet property, Takai duality and the Hao-Ng isomorphism problem. They also answer questions from the pertinent literature.

Crossed Products of C*-Algebras, Topological Dynamics, and Classification

Crossed Products of C*-Algebras, Topological Dynamics, and Classification
Author: Thierry Giordano
Publisher: Springer
Total Pages: 494
Release: 2018-08-28
Genre: Mathematics
ISBN: 3319708694

This book collects the notes of the lectures given at an Advanced Course on Dynamical Systems at the Centre de Recerca Matemàtica (CRM) in Barcelona. The notes consist of four series of lectures. The first one, given by Andrew Toms, presents the basic properties of the Cuntz semigroup and its role in the classification program of simple, nuclear, separable C*-algebras. The second series of lectures, delivered by N. Christopher Phillips, serves as an introduction to group actions on C*-algebras and their crossed products, with emphasis on the simple case and when the crossed products are classifiable. The third one, given by David Kerr, treats various developments related to measure-theoretic and topological aspects of crossed products, focusing on internal and external approximation concepts, both for groups and C*-algebras. Finally, the last series of lectures, delivered by Thierry Giordano, is devoted to the theory of topological orbit equivalence, with particular attention to the classification of minimal actions by finitely generated abelian groups on the Cantor set.

An Introduction to C*-Algebras and the Classification Program

An Introduction to C*-Algebras and the Classification Program
Author: Karen R. Strung
Publisher: Springer Nature
Total Pages: 322
Release: 2020-12-15
Genre: Mathematics
ISBN: 3030474658

This book is directed towards graduate students that wish to start from the basic theory of C*-algebras and advance to an overview of some of the most spectacular results concerning the structure of nuclear C*-algebras. The text is divided into three parts. First, elementary notions, classical theorems and constructions are developed. Then, essential examples in the theory, such as crossed products and the class of quasidiagonal C*-algebras, are examined, and finally, the Elliott invariant, the Cuntz semigroup, and the Jiang-Su algebra are defined. It is shown how these objects have played a fundamental role in understanding the fine structure of nuclear C*-algebras. To help understanding the theory, plenty of examples, treated in detail, are included. This volume will also be valuable to researchers in the area as a reference guide. It contains an extensive reference list to guide readers that wish to travel further.

Tensor Products of C*-algebras and Operator Spaces

Tensor Products of C*-algebras and Operator Spaces
Author: Gilles Pisier
Publisher: Cambridge University Press
Total Pages: 495
Release: 2020-02-27
Genre: Mathematics
ISBN: 1108479014

Presents an important open problem on operator algebras in a style accessible to young researchers or Ph.D. students.

K-Theory for Group C*-Algebras and Semigroup C*-Algebras

K-Theory for Group C*-Algebras and Semigroup C*-Algebras
Author: Joachim Cuntz
Publisher: Birkhäuser
Total Pages: 325
Release: 2017-10-24
Genre: Mathematics
ISBN: 3319599151

This book gives an account of the necessary background for group algebras and crossed products for actions of a group or a semigroup on a space and reports on some very recently developed techniques with applications to particular examples. Much of the material is available here for the first time in book form. The topics discussed are among the most classical and intensely studied C*-algebras. They are important for applications in fields as diverse as the theory of unitary group representations, index theory, the topology of manifolds or ergodic theory of group actions. Part of the most basic structural information for such a C*-algebra is contained in its K-theory. The determination of the K-groups of C*-algebras constructed from group or semigroup actions is a particularly challenging problem. Paul Baum and Alain Connes proposed a formula for the K-theory of the reduced crossed product for a group action that would permit, in principle, its computation. By work of many hands, the formula has by now been verified for very large classes of groups and this work has led to the development of a host of new techniques. An important ingredient is Kasparov's bivariant K-theory. More recently, also the C*-algebras generated by the regular representation of a semigroup as well as the crossed products for actions of semigroups by endomorphisms have been studied in more detail. Intriguing examples of actions of such semigroups come from ergodic theory as well as from algebraic number theory. The computation of the K-theory of the corresponding crossed products needs new techniques. In cases of interest the K-theory of the algebras reflects ergodic theoretic or number theoretic properties of the action.

Quantum Symmetries

Quantum Symmetries
Author: Guillaume Aubrun
Publisher: Springer
Total Pages: 126
Release: 2017-10-11
Genre: Mathematics
ISBN: 331963206X

Providing an introduction to current research topics in functional analysis and its applications to quantum physics, this book presents three lectures surveying recent progress and open problems. A special focus is given to the role of symmetry in non-commutative probability, in the theory of quantum groups, and in quantum physics. The first lecture presents the close connection between distributional symmetries and independence properties. The second introduces many structures (graphs, C*-algebras, discrete groups) whose quantum symmetries are much richer than their classical symmetry groups, and describes the associated quantum symmetry groups. The last lecture shows how functional analytic and geometric ideas can be used to detect and to quantify entanglement in high dimensions. The book will allow graduate students and young researchers to gain a better understanding of free probability, the theory of compact quantum groups, and applications of the theory of Banach spaces to quantum information. The latter applications will also be of interest to theoretical and mathematical physicists working in quantum theory.