Critical Point Theory And Hamiltonian Systems
Download Critical Point Theory And Hamiltonian Systems full books in PDF, epub, and Kindle. Read online free Critical Point Theory And Hamiltonian Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Jean Mawhin |
Publisher | : Springer Science & Business Media |
Total Pages | : 292 |
Release | : 2013-04-17 |
Genre | : Science |
ISBN | : 1475720610 |
FACHGEB The last decade has seen a tremendous development in critical point theory in infinite dimensional spaces and its application to nonlinear boundary value problems. In particular, striking results were obtained in the classical problem of periodic solutions of Hamiltonian systems. This book provides a systematic presentation of the most basic tools of critical point theory: minimization, convex functions and Fenchel transform, dual least action principle, Ekeland variational principle, minimax methods, Lusternik- Schirelmann theory for Z2 and S1 symmetries, Morse theory for possibly degenerate critical points and non-degenerate critical manifolds. Each technique is illustrated by applications to the discussion of the existence, multiplicity, and bifurcation of the periodic solutions of Hamiltonian systems. Among the treated questions are the periodic solutions with fixed period or fixed energy of autonomous systems, the existence of subharmonics in the non-autonomous case, the asymptotically linear Hamiltonian systems, free and forced superlinear problems. Application of those results to the equations of mechanical pendulum, to Josephson systems of solid state physics and to questions from celestial mechanics are given. The aim of the book is to introduce a reader familiar to more classical techniques of ordinary differential equations to the powerful approach of modern critical point theory. The style of the exposition has been adapted to this goal. The new topological tools are introduced in a progressive but detailed way and immediately applied to differential equation problems. The abstract tools can also be applied to partial differential equations and the reader will also find the basic references in this direction in the bibliography of more than 500 items which concludes the book. ERSCHEIN
Author | : Wenming Zou |
Publisher | : Springer Science & Business Media |
Total Pages | : 323 |
Release | : 2006-09-10 |
Genre | : Mathematics |
ISBN | : 0387329684 |
This book presents some of the latest research in critical point theory, describing methods and presenting the newest applications. Coverage includes extrema, even valued functionals, weak and double linking, sign changing solutions, Morse inequalities, and cohomology groups. Applications described include Hamiltonian systems, Schrödinger equations and systems, jumping nonlinearities, elliptic equations and systems, superlinear problems and beam equations.
Author | : Paul H. Rabinowitz |
Publisher | : American Mathematical Soc. |
Total Pages | : 110 |
Release | : 1986-07-01 |
Genre | : Mathematics |
ISBN | : 0821807153 |
The book provides an introduction to minimax methods in critical point theory and shows their use in existence questions for nonlinear differential equations. An expanded version of the author's 1984 CBMS lectures, this volume is the first monograph devoted solely to these topics. Among the abstract questions considered are the following: the mountain pass and saddle point theorems, multiple critical points for functionals invariant under a group of symmetries, perturbations from symmetry, and variational methods in bifurcation theory. The book requires some background in functional analysis and differential equations, especially elliptic partial differential equations. It is addressed to mathematicians interested in differential equations and/or nonlinear functional analysis, particularly critical point theory.
Author | : Simonetta Abenda |
Publisher | : World Scientific |
Total Pages | : 306 |
Release | : 2002 |
Genre | : Mathematics |
ISBN | : 9812795405 |
This is the fourth conference on OC Supersymmetry and Perturbation TheoryOCO (SPT 2002). The proceedings present original results and state-of-the-art reviews on topics related to symmetry, integrability and perturbation theory, etc. Contents: An Outline of the Geometrical Theory of the Separation of Variables in the Hamilton-Jacobi and SchrAdinger Equations (S Benenti); Partial Symmetries and Symmetric Sets of Solutions to PDE's (G Cicogna); On the Algebro-Geometric Solution of 3 x 3 Matrix Riemann-Hilbert Problem (V Enolski & T Grava); Bifurcations in Flow-Induced Vibration (S Fatimah & F Verhulst); Steklov-Lyapunov Type Systems (Yu N Fedorov); Renormalization Group and Summation of Divergent Series for Hyperbolic Invariant Tori (G Gentile); On the Linearization of Holomorphic Vector Fields in the Siegel Domain with Linear Parts Having Nontrivial Jordan Blocks (T Gramchev); Smooth Normalization of a Vector Field Near an Invariant Manifold (A Kopanskii); Inverse Problems for SL (2) Lattices (V B Kuznetsov); Some Remarks about the Geometry of Hamiltonian Conservation Laws (J-P Ortega); Janet's Algorithm (W Plesken); Some Integrable Billiards (E Previato); Symmetries of Relative Equilibria for Simple Mechanical Systems (M Rodr guez-Olmos & M E Sousa Dias); A Spectral Sequences Approach to Normal Forms (J A Sanders); Rational Parametrization of Strata in Orbit Spaces of Compact Linear Groups (G Sartori & G Valente); Effective Hamiltonians and Perturbation Theory for Quantum Bound States of Nuclear Motion in Molecules (V G Tyuterev); Generalized Hasimoto Transformation and Vector Sine-Gordon Equation (J P Wang); and other papers. Readership: Researchers and graduate students in mathematical and theoretical physics, and nonlinear science."
Author | : Martin Schechter |
Publisher | : Springer Nature |
Total Pages | : 347 |
Release | : 2020-05-30 |
Genre | : Mathematics |
ISBN | : 303045603X |
This monograph collects cutting-edge results and techniques for solving nonlinear partial differential equations using critical points. Including many of the author’s own contributions, a range of proofs are conveniently collected here, Because the material is approached with rigor, this book will serve as an invaluable resource for exploring recent developments in this active area of research, as well as the numerous ways in which critical point theory can be applied. Different methods for finding critical points are presented in the first six chapters. The specific situations in which these methods are applicable is explained in detail. Focus then shifts toward the book’s main subject: applications to problems in mathematics and physics. These include topics such as Schrödinger equations, Hamiltonian systems, elliptic systems, nonlinear wave equations, nonlinear optics, semilinear PDEs, boundary value problems, and equations with multiple solutions. Readers will find this collection of applications convenient and thorough, with detailed proofs appearing throughout. Critical Point Theory will be ideal for graduate students and researchers interested in solving differential equations, and for those studying variational methods. An understanding of fundamental mathematical analysis is assumed. In particular, the basic properties of Hilbert and Banach spaces are used.
Author | : Alberto Abbondandolo |
Publisher | : CRC Press |
Total Pages | : 202 |
Release | : 2001-03-15 |
Genre | : Mathematics |
ISBN | : 1482285746 |
This Research Note explores existence and multiplicity questions for periodic solutions of first order, non-convex Hamiltonian systems. It introduces a new Morse (index) theory that is easier to use, less technical, and more flexible than existing theories and features techniques and results that, until now, have appeared only in scattered journals
Author | : Helmut Hofer |
Publisher | : Birkhäuser |
Total Pages | : 356 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3034885407 |
Analysis of an old variational principal in classical mechanics has established global periodic phenomena in Hamiltonian systems. One of the links is a class of sympletic invariants, called sympletic capacities, and these invariants are the main theme of this book. Topics covered include basic sympletic geometry, sympletic capacities and rigidity, sympletic fixed point theory, and a survey on Floer homology and sympletic homology.
Author | : Martin Schechter |
Publisher | : Springer Science & Business Media |
Total Pages | : 239 |
Release | : 2009-05-28 |
Genre | : Mathematics |
ISBN | : 0817649026 |
This text starts at the foundations of the field, and is accessible with some background in functional analysis. As such, the book is ideal for classroom of self study. The new material covered also makes this book a must read for researchers in the theory of critical points.
Author | : Marco Mazzucchelli |
Publisher | : Springer Science & Business Media |
Total Pages | : 196 |
Release | : 2011-11-16 |
Genre | : Science |
ISBN | : 3034801637 |
Lagrangian systems constitute a very important and old class in dynamics. Their origin dates back to the end of the eighteenth century, with Joseph-Louis Lagrange’s reformulation of classical mechanics. The main feature of Lagrangian dynamics is its variational flavor: orbits are extremal points of an action functional. The development of critical point theory in the twentieth century provided a powerful machinery to investigate existence and multiplicity questions for orbits of Lagrangian systems. This monograph gives a modern account of the application of critical point theory, and more specifically Morse theory, to Lagrangian dynamics, with particular emphasis toward existence and multiplicity of periodic orbits of non-autonomous and time-periodic systems.
Author | : Massimiliano Berti |
Publisher | : Springer Science & Business Media |
Total Pages | : 191 |
Release | : 2007-10-01 |
Genre | : Mathematics |
ISBN | : 0817646809 |
Many partial differential equations (PDEs) that arise in physics can be viewed as infinite-dimensional Hamiltonian systems. This monograph presents recent existence results of nonlinear oscillations of Hamiltonian PDEs, particularly of periodic solutions for completely resonant nonlinear wave equations. The text serves as an introduction to research in this fascinating and rapidly growing field. Graduate students and researchers interested in variational techniques and nonlinear analysis applied to Hamiltonian PDEs will find inspiration in the book.