Critical Current Limitation In High Temperature Superconductors
Download Critical Current Limitation In High Temperature Superconductors full books in PDF, epub, and Kindle. Read online free Critical Current Limitation In High Temperature Superconductors ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Waldemar Gorzkowski |
Publisher | : World Scientific |
Total Pages | : 412 |
Release | : 1992-03-27 |
Genre | : |
ISBN | : 9814555584 |
This volume will focus on the theory and experiments leading to quantitative understanding of the magnetic field and temperature dependence of critical current densities in high-temperature superconductors. Topics will include: critical currents and flux-pinning, flux flow and flux creep, anisotropy of critical fields and currents, properties of the flux lattice and the irreversibility line, magnetization, granularity.
Author | : Anant V. Narlikar |
Publisher | : Springer Science & Business Media |
Total Pages | : 585 |
Release | : 2013-11-11 |
Genre | : Technology & Engineering |
ISBN | : 3662077647 |
In contrast to research on the fundamental mechanisms of High-Temperature Superconductivity, in recent years we have seen enormous developments in the fabrication and application of High-Tc-superconductors. The two volumes of High Temperature Superconductivity provide a survey of the state of the technology and engineering applications of these materials. They comprise extended original research papers and technical review articles written by physicists, chemists, materials scientists and engineers, all of them noted experts in their fields. The interdisciplinary and strictly application-oriented coverage should benefit graduate students and academic researchers in the mentioned areas as well as industrial experts. Volume 1 "Materials" focuses on major technical advancements in High-Tc materials processing for applications. Volume 2 "Engineering Applications" covers numerous application areas where High-Tc superconductors are making tremendous impact.
Author | : Rainer Wesche |
Publisher | : Springer Science & Business Media |
Total Pages | : 448 |
Release | : 2013-11-27 |
Genre | : Technology & Engineering |
ISBN | : 1461550750 |
The discovery by J. G. Bednorz and K. A. Mtllier in 1986 that the superconducting state can exist in oxides at temperatures above 30 K stimulated research in the field of superconductivity and opened up a new field of research. Within a few years a large number of cuprate superconductors with transition temperatures well above the boiling point of liquid nitrogen have been found. The possibility of using liquid nitrogen as coolant re-stimulated interest in power applications of supercon ductivity. In this book an overview of the known high-Te superconductors and their physical properties is presented. Aspects related to conductor fabrication and high-current applications are emphasised. The material should be suitable for use in graduate level courses on superconductivity. Researchers in the field may profit from the large number of tables and references describing its status at the end of 1997. An introduction to high-To superconductivity must be based on the fundamental physical principles of normal-state electrical conductivity and the well-known characteristics of conventional superconductors. In Chapter 2 this background is provided. Crystal structures, anisotropic properties and general trends of the critical temperatures of the cuprate superconductors are described in Chapters 3 and 4. The processing of superconductor powders addressed in Chapter 5 affects considerably the current-carrying capacity of high-T. wires. In Chapter 6 several fabrication techniques for superconducting wires are described. In addition, the factors limiting the transport critical currents ofhigh-Te wires are discussed.
Author | : Donald M Ginsberg |
Publisher | : World Scientific |
Total Pages | : 718 |
Release | : 1990-02-01 |
Genre | : Science |
ISBN | : 9814507059 |
Since the publication of Physical Properties of High Temperature Superconductors I, research in the field of high temperature superconductivity has continued at a rapid pace. Volume II will contain chapters on some of the major areas of activity which were not covered extensively in Volume I: structure, microstructure, thermodynamics, oxygen stoichiometry effects, nuclear magnetic and quadrupole resonance, Hall effect, electronic structure, and the pairing state. Like Volume I, it will present authoritative and comprehensive reviews written by recognized experts in the field. This book should be useful to all students, scientists, and engineers who desire to know more about high temperature superconductivity.
Author | : Klaus D. Timmerhaus |
Publisher | : Springer Science & Business Media |
Total Pages | : 614 |
Release | : 2013-06-29 |
Genre | : Science |
ISBN | : 1468487566 |
Cryogenics, a term commonly used to refer to very low temperatures, had its beginning in the latter half of the last century when man learned, for the first time, how to cool objects to a temperature lower than had ever existed na tu rally on the face of the earth. The air we breathe was first liquefied in 1883 by a Polish scientist named Olszewski. Ten years later he and a British scientist, Sir James Dewar, liquefied hydrogen. Helium, the last of the so-caBed permanent gases, was finally liquefied by the Dutch physicist Kamerlingh Onnes in 1908. Thus, by the beginning of the twentieth century the door had been opened to astrange new world of experimentation in which aB substances, except liquid helium, are solids and where the absolute temperature is only a few microdegrees away. However, the point on the temperature scale at which refrigeration in the ordinary sense of the term ends and cryogenics begins has ne ver been weB defined. Most workers in the field have chosen to restrict cryogenics to a tem perature range below -150°C (123 K). This is a reasonable dividing line since the normal boiling points of the more permanent gases, such as helium, hydrogen, neon, nitrogen, oxygen, and air, lie below this temperature, while the more common refrigerants have boiling points that are above this temperature. Cryogenic engineering is concerned with the design and development of low-temperature systems and components.
Author | : Ziad Melhem |
Publisher | : Elsevier |
Total Pages | : 428 |
Release | : 2011-12-21 |
Genre | : Technology & Engineering |
ISBN | : 0857095293 |
High temperature superconductors (HTS) offer many advantages through their application in electrical systems, including high efficiency performance and high throughput with low-electrical losses. While cryogenic cooling and precision materials manufacture is required to achieve this goal, cost reductions without significant performance loss are being achieved through the advanced design and development of HTS wires, cables and magnets, along with improvements in manufacturing methods. This book explores the fundamental principles, design and development of HTS materials and their practical applications in energy systems.Part one describes the fundamental science, engineering and development of particular HTS components such as wires and tapes, cables, coils and magnets and discusses the cryogenics and electromagnetic modelling of HTS systems and materials. Part two reviews the types of energy applications that HTS materials are used in, including fault current limiters, power cables and energy storage, as well as their application in rotating machinery for improved electrical efficiencies, and in fusion technologies and accelerator systems where HTS magnets are becoming essential enabling technologies.With its distinguished editor and international team of expert contributors, High temperature superconductors (HTS) for energy applications is an invaluable reference tool for anyone involved or interested in HTS materials and their application in energy systems, including materials scientists and electrical engineers, energy consultants, HTS materials manufacturers and designers, and researchers and academics in this field. - Discusses fundamental issues and developments of particular HTS components - Comprehensively reviews the design and development of HTS materials and then applications in energy systems - Reviews the use of HTS materials and cabling transmissions, fault alignment limiters, energy storage, generators and motors, fusion and accelerator
Author | : Rainer Wesche |
Publisher | : John Wiley & Sons |
Total Pages | : 544 |
Release | : 2015-05-13 |
Genre | : Technology & Engineering |
ISBN | : 1118696697 |
A much-needed update on complex high-temperaturesuperconductors, focusing on materials aspects; this timely bookcoincides with a recent major break-through of the discovery ofiron-based superconductors. It provides an overview of materials aspects of high-temperaturesuperconductors, combining introductory aspects, description of newphysics, material aspects, and a description of the materialproperties This title is suitable for researchers inmaterials science, physics and engineering. Also for techniciansinterested in the applications of superconductors, e.g. asbiomagnets
Author | : A. V. Narlikar |
Publisher | : Springer Science & Business Media |
Total Pages | : 608 |
Release | : 2004 |
Genre | : Technology & Engineering |
ISBN | : 9783540406396 |
In contrast to research on the fundamental mechanisms of High-Temperature Superconductivity, in recent years we have seen enormous developments in the fabrication and application of High-Tc-superconductors. The two volumes of High Temperature Superconductivity provide a survey of the state of the technology and engineering applications of these materials. They comprise extended original research papers and technical review articles written by physicists, chemists, materials scientists and engineers, all of them noted experts in their fields. The interdisciplinary and strictly application-oriented coverage should benefit graduate students and academic researchers in the mentioned areas as well as industrial experts. Volume 1 "Materials" focuses on major technical advancements in High-Tc materials processing for applications. Volume 2 "Engineering Applications" covers numerous application areas where High-Tc superconductors are making tremendous impact.
Author | : A. V. Narlikar |
Publisher | : Nova Publishers |
Total Pages | : 468 |
Release | : 1995 |
Genre | : Science |
ISBN | : 9781560721826 |
Visualisation of Shubnikov Phase Using the High Resolution Faraday Effect; Mechanism of microwave Absorption and Flux Distribution in High Temperature Superconductors; Field Penetration and Magnetisation of Hts; Experimental Aspects of Megnetisation Studies in Superconductors; Recent Development of the Critical State Model; Anomalous Magnetisation in Ybacuo Single Crystals; Surface Barrier and Fish Tail; Low Field Magnetic Behaviour of High Temperature Superconductors; Irreversible Part of Magnetisation Due to Flux Pinning; Irreversibility Line in High Temperature Superconductors; Non-Linear Flux Flow Regime High-Temperature Superconductors.
Author | : Beate Lehndorff |
Publisher | : Springer |
Total Pages | : 204 |
Release | : 2003-07-01 |
Genre | : Technology & Engineering |
ISBN | : 3540409831 |
Since the discovery of high temperature superconductors the scientific com nmnity has been very active in research on material and system development as well as on the basic understanding of the mechanism of superconductiv ity at high transition temperatures. Industrial groups joined in very soon as with these new materials the prospects for commercial application of super conductivity seemed to be more promising than ever. Materials processing was divided into film deposition and bulk preparation techniques, the latter including conductor fabrication and melt growth of monolithic samples as well. Because of the high impact of possible applications in energy technol ogy, wire and tape fabrication of the BSCCO superconductors is one of the most important fields, in addition to thin film technology for mobile comuni cation. Only since processes like IBAD and RABiTS TM were invented have film deposition techniques also become important for energy technology. In order to produce suitable conductors with material properties which meet the challenge imposed by energy technology, detailed understanding of the phase formation and physical properties of the high temperature super conductors is necessary. The goal of this book is on one hand to provide the basic information on phase formation and physical properties, and to give a short overview of the state of the art in conductor preparation and character ization. On the other hand it contains the author's own results in the field of preparation and characterization.