Correcting for Precipitation Effects in Satellite-based Passive Microwave Tropical Cyclone Intensity Estimates

Correcting for Precipitation Effects in Satellite-based Passive Microwave Tropical Cyclone Intensity Estimates
Author: Robert S. Wacker
Publisher:
Total Pages: 168
Release: 2005
Genre: Cyclones
ISBN:

Accurate tropical cyclone (TC) intensity estimates are best achieved from satellite observations. The Advanced Microwave Sounding Unit (AMSU) has operated since 1998 on polar-orbiting environmental satellites and is able to measure the warm temperature anomaly in the upper troposphere above a TC's center. Through hydrostatic equilibrium, this warm anomaly is roughly proportional to the TC's sea-level pressure anomaly. Based on this principle, the Cooperative Institute for Meteorological Satellite Studies (CIMSS) provides near real-time AMSU-based estimates of TC minimum sea-level pressure (MSLP) to forecast centers worldwide. These estimates are as accurate as the benchmark Dvorak technique, but are subject to error caused by precipitation effects (primarily brightness temperature reduction by scattering) on the AMSU 55 GHz channels sensitive to upper-tropospheric temperature. Simulated AMSU brightness temperatures (TB's) are produced by a polarized reverse Monte Carlo radiative transfer model using representative TC precipitation profiles. Results suggest that precipitation depression of high-frequency window channel TB's is correlated with depression of sounding channel TB's and can be used to correct for scattering effects on the AMSU channels used in TC intensity estimates. Analysis of AMSU data over the tropical oceans confirms this, and forms the basis for an empirical scattering correction using AMSU 31 and 89 GHz TB's. This scattering correction reduces CIMSS TC MSLP algorithm RMS error by 10% in a 7-year, 497 observation sample.

Global Perspectives on Tropical Cyclones

Global Perspectives on Tropical Cyclones
Author: Johnny C. L. Chan
Publisher: World Scientific
Total Pages: 445
Release: 2010
Genre: Science
ISBN: 9814293474

Make God's Word your everyday traveling companion. Thin and lightweight, Thomas Nelson's KJV Compact UltraSlim™ Bible boasts a complete and easy-to-read Bible that is ready to go when you are! A Bible you can be comfortable taking with you every day and everywhere you go, the Compact UltraSlim Bible is thin enough to tuck into your purse, briefcase, backpack, or glove compartment, yet large enough for easy readability. The Compact UltraSlim Bible is the perfect gift and ideal companion for today's Christian on the move. Features include: Presentation page Self-pronouncing text Words of Jesus in red Concordance Full-color maps Type size: 6 Part of the CLASSIC SERIES line of Thomas Nelson Bibles Compact UltraSlim Bibles sold to date: More than 135,000 The King James Version-The most successful Bible translation in history with billions of copies published Thomas Nelson Bibles is giving back through the God's Word in Action program. Donating a portion of profits to World Vision, we are helping to eradicate poverty and preventable deaths among children. Learn more and discover what you can do at www.seegodswordinaction.com.

Remote Sensing of the Terrestrial Water Cycle

Remote Sensing of the Terrestrial Water Cycle
Author: Venkataraman Lakshmi
Publisher: John Wiley & Sons
Total Pages: 572
Release: 2014-10-31
Genre: Science
ISBN: 1118872266

Remote Sensing of the Terrestrial Water Cycle is an outcome of the AGU Chapman Conference held in February 2012. This is a comprehensive volume that examines the use of available remote sensing satellite data as well as data from future missions that can be used to expand our knowledge in quantifying the spatial and temporal variations in the terrestrial water cycle. Volume highlights include: An in-depth discussion of the global water cycle Approaches to various problems in climate, weather, hydrology, and agriculture Applications of satellite remote sensing in measuring precipitation, surface water, snow, soil moisture, groundwater, modeling, and data assimilation A description of the use of satellite data for accurately estimating and monitoring the components of the hydrological cycle Discussion of the measurement of multiple geophysical variables and properties over different landscapes on a temporal and a regional scale

A Satellite-Based Multi-Channel Approach to Tropical Cyclone Intensity Estimation Using the AMSU Passive Microwave Sensor

A Satellite-Based Multi-Channel Approach to Tropical Cyclone Intensity Estimation Using the AMSU Passive Microwave Sensor
Author: Brian W. Kabat
Publisher:
Total Pages: 156
Release: 2002
Genre: Science
ISBN:

In tropical cyclones, a strong inverse relationship exists between the magnitude of the upper-tropospheric warm anomaly (UTWA) and minimum sea level pressure (MSLP). Uniquely poised to capture this warming aloft, the Advanced Microwave Sounding Unit (AMSU) flown aboard current National Oceanic and Atmospheric Administration (NOAA) polar-orbiting satellites is capable of observing Tropical Cyclones (TC's) worldwide. A physical/statistical MSLP estimation algorithm based on AMSU brightness temperature anomalies (dTbs) has been operating in an experimental mode at the University of Wisconsin Cooperative Institute for Meteorological Satellite Studies (UW-CIMSS) for two years. The algorithm relies on a single AMSU channel (54.9 GHz) and shows great promise as a viable TC analysis tool. However, the radiances can be susceptible to environmental variability leading to sub-sampling and errors in MSLP. The goal of this research is to improve the existing single-channel algorithm by introducing an additional channel (55.5 GHz) that seeks to capture the true magnitude of the UTWA in instances when the single channel fails. By implementing the multi-channel approach, the goal is to create an operationally viable satellite-based guidance tool to help support tropical forecast and analysis centers worldwide.

Artificial Intelligence Methods in the Environmental Sciences

Artificial Intelligence Methods in the Environmental Sciences
Author: Sue Ellen Haupt
Publisher: Springer Science & Business Media
Total Pages: 418
Release: 2008-11-28
Genre: Science
ISBN: 1402091192

How can environmental scientists and engineers use the increasing amount of available data to enhance our understanding of planet Earth, its systems and processes? This book describes various potential approaches based on artificial intelligence (AI) techniques, including neural networks, decision trees, genetic algorithms and fuzzy logic. Part I contains a series of tutorials describing the methods and the important considerations in applying them. In Part II, many practical examples illustrate the power of these techniques on actual environmental problems. International experts bring to life ways to apply AI to problems in the environmental sciences. While one culture entwines ideas with a thread, another links them with a red line. Thus, a “red thread“ ties the book together, weaving a tapestry that pictures the ‘natural’ data-driven AI methods in the light of the more traditional modeling techniques, and demonstrating the power of these data-based methods.

Satellite-based Applications on Climate Change

Satellite-based Applications on Climate Change
Author: John Qu
Publisher: Springer Science & Business Media
Total Pages: 372
Release: 2013-03-19
Genre: Science
ISBN: 9400758723

Climate and other environmental changes are drawing unprecedented concern and attention from national governments, international organizations and local communities. Global warming has left noticeable impacts on the environment and the ecosystems it supports (including humans), and has important implications for sustainable economic and social development in the future. Satellite observations of climate and environmental change have become an increasingly important tool in recent years in helping to shape the response of international communities to this critical global challenge. The book presents the latest advances in satellite-based remote sensing of the Earth’s environment - ranging from applications in climate and atmospheric science to hydrology, oceanography, hydrology, geomorphology, ecology and fire studies. Introductory chapters also cover key technical aspects such as instrumentation, calibration, data analysis, and GIS tools for decision-making.

Precipitation: Advances in Measurement, Estimation and Prediction

Precipitation: Advances in Measurement, Estimation and Prediction
Author: Silas C. Michaelides
Publisher: Springer Science & Business Media
Total Pages: 552
Release: 2008-02-27
Genre: Science
ISBN: 3540776559

This volume is the outcome of contributions from 51 scientists who were invited to expose their latest findings on precipitation research and in particular, on the measurement, estimation and prediction of precipitation. The reader is presented with a blend of theoretical, mathematical and technical treatise of precipitation science but also with authentic applications, ranging from local field experiments and country-scale campaigns to multinational space endeavors.

Spatiotemporal Analysis of Extreme Hydrological Events

Spatiotemporal Analysis of Extreme Hydrological Events
Author: Gerald Corzo
Publisher: Elsevier
Total Pages: 194
Release: 2018-11-20
Genre: Science
ISBN: 0128117311

Spatio-temporal Analysis of Extreme Hydrological Events offers an extensive view of the experiences and applications of the latest developments and methodologies for analyzing and understanding extreme environmental and hydrological events. The book addresses the topic using spatio-temporal methods, such as space-time geostatistics, machine learning, statistical theory, hydrological modelling, neural network and evolutionary algorithms. This important resource for both hydrologists and statisticians interested in the framework of spatial and temporal analysis of hydrological events will provide users with an enhanced understanding of the relationship between magnitude, dynamics and the probability of extreme hydrological events. - Presents spatio-temporal processes, including multivariate dynamic modelling - Provides varying methodological approaches, giving the readers multiple hydrological modelling information to use in their work - Includes a variety of case studies making the context of the book relatable to everyday working situations