Convex Analysis And Optimization In Hadamard Spaces
Download Convex Analysis And Optimization In Hadamard Spaces full books in PDF, epub, and Kindle. Read online free Convex Analysis And Optimization In Hadamard Spaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Miroslav Bacak |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 194 |
Release | : 2014-10-29 |
Genre | : Mathematics |
ISBN | : 3110361620 |
In the past two decades, convex analysis and optimization have been developed in Hadamard spaces. This book represents a first attempt to give a systematic account on the subject. Hadamard spaces are complete geodesic spaces of nonpositive curvature. They include Hilbert spaces, Hadamard manifolds, Euclidean buildings and many other important spaces. While the role of Hadamard spaces in geometry and geometric group theory has been studied for a long time, first analytical results appeared as late as in the 1990s. Remarkably, it turns out that Hadamard spaces are appropriate for the theory of convex sets and convex functions outside of linear spaces. Since convexity underpins a large number of results in the geometry of Hadamard spaces, we believe that its systematic study is of substantial interest. Optimization methods then address various computational issues and provide us with approximation algorithms which may be useful in sciences and engineering. We present a detailed description of such an application to computational phylogenetics. The book is primarily aimed at both graduate students and researchers in analysis and optimization, but it is accessible to advanced undergraduate students as well.
Author | : Dimitri Bertsekas |
Publisher | : Athena Scientific |
Total Pages | : 560 |
Release | : 2003-03-01 |
Genre | : Mathematics |
ISBN | : 1886529450 |
A uniquely pedagogical, insightful, and rigorous treatment of the analytical/geometrical foundations of optimization. The book provides a comprehensive development of convexity theory, and its rich applications in optimization, including duality, minimax/saddle point theory, Lagrange multipliers, and Lagrangian relaxation/nondifferentiable optimization. It is an excellent supplement to several of our books: Convex Optimization Theory (Athena Scientific, 2009), Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2016), Network Optimization (Athena Scientific, 1998), and Introduction to Linear Optimization (Athena Scientific, 1997). Aside from a thorough account of convex analysis and optimization, the book aims to restructure the theory of the subject, by introducing several novel unifying lines of analysis, including: 1) A unified development of minimax theory and constrained optimization duality as special cases of duality between two simple geometrical problems. 2) A unified development of conditions for existence of solutions of convex optimization problems, conditions for the minimax equality to hold, and conditions for the absence of a duality gap in constrained optimization. 3) A unification of the major constraint qualifications allowing the use of Lagrange multipliers for nonconvex constrained optimization, using the notion of constraint pseudonormality and an enhanced form of the Fritz John necessary optimality conditions. Among its features the book: a) Develops rigorously and comprehensively the theory of convex sets and functions, in the classical tradition of Fenchel and Rockafellar b) Provides a geometric, highly visual treatment of convex and nonconvex optimization problems, including existence of solutions, optimality conditions, Lagrange multipliers, and duality c) Includes an insightful and comprehensive presentation of minimax theory and zero sum games, and its connection with duality d) Describes dual optimization, the associated computational methods, including the novel incremental subgradient methods, and applications in linear, quadratic, and integer programming e) Contains many examples, illustrations, and exercises with complete solutions (about 200 pages) posted at the publisher's web site http://www.athenasc.com/convexity.html
Author | : Michel C. Delfour |
Publisher | : SIAM |
Total Pages | : 446 |
Release | : 2019-12-19 |
Genre | : Mathematics |
ISBN | : 1611975964 |
This second edition provides an enhanced exposition of the long-overlooked Hadamard semidifferential calculus, first introduced in the 1920s by mathematicians Jacques Hadamard and Maurice René Fréchet. Hadamard semidifferential calculus is possibly the largest family of nondifferentiable functions that retains all the features of classical differential calculus, including the chain rule, making it a natural framework for initiating a large audience of undergraduates and non-mathematicians into the world of nondifferentiable optimization. Introduction to Optimization and Hadamard Semidifferential Calculus, Second Edition builds upon its prior editions foundations in Hadamard semidifferential calculus, showcasing new material linked to convex analysis and nonsmooth optimization. It presents a modern treatment of optimization and Hadamard semidifferential calculus while remaining at a level that is accessible to undergraduate students, and challenges students with exercises related to problems in such fields as engineering, mechanics, medicine, physics, and economics. Answers are supplied in Appendix B. Students of mathematics, physics, engineering, economics, and other disciplines that demand a basic knowledge of mathematical analysis and linear algebra will find this a fitting primary or companion resource for their studies. This textbook has been designed and tested for a one-term course at the undergraduate level. In its full version, it is appropriate for a first-year graduate course and as a reference.
Author | : S.K. Neogy |
Publisher | : Springer |
Total Pages | : 234 |
Release | : 2018-11-28 |
Genre | : Mathematics |
ISBN | : 981133059X |
This book discusses recent developments in mathematical programming and game theory, and the application of several mathematical models to problems in finance, games, economics and graph theory. All contributing authors are eminent researchers in their respective fields, from across the world. This book contains a collection of selected papers presented at the 2017 Symposium on Mathematical Programming and Game Theory at New Delhi during 9–11 January 2017. Researchers, professionals and graduate students will find the book an essential resource for current work in mathematical programming, game theory and their applications in finance, economics and graph theory. The symposium provides a forum for new developments and applications of mathematical programming and game theory as well as an excellent opportunity to disseminate the latest major achievements and to explore new directions and perspectives.
Author | : |
Publisher | : Elsevier |
Total Pages | : 706 |
Release | : 2019-10-16 |
Genre | : Mathematics |
ISBN | : 0444641416 |
Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2, Volume 20, surveys the contemporary developments relating to the analysis and learning of images, shapes and forms, covering mathematical models and quick computational techniques. Chapter cover Alternating Diffusion: A Geometric Approach for Sensor Fusion, Generating Structured TV-based Priors and Associated Primal-dual Methods, Graph-based Optimization Approaches for Machine Learning, Uncertainty Quantification and Networks, Extrinsic Shape Analysis from Boundary Representations, Efficient Numerical Methods for Gradient Flows and Phase-field Models, Recent Advances in Denoising of Manifold-Valued Images, Optimal Registration of Images, Surfaces and Shapes, and much more. - Covers contemporary developments relating to the analysis and learning of images, shapes and forms - Presents mathematical models and quick computational techniques relating to the topic - Provides broad coverage, with sample chapters presenting content on Alternating Diffusion and Generating Structured TV-based Priors and Associated Primal-dual Methods
Author | : Aram V. Arutyunov |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 209 |
Release | : 2016-12-05 |
Genre | : Mathematics |
ISBN | : 3110460300 |
This textbook is devoted to a compressed and self-contained exposition of two important parts of contemporary mathematics: convex and set-valued analysis. In the first part, properties of convex sets, the theory of separation, convex functions and their differentiability, properties of convex cones in finite- and infinite-dimensional spaces are discussed. The second part covers some important parts of set-valued analysis. There the properties of the Hausdorff metric and various continuity concepts of set-valued maps are considered. The great attention is paid also to measurable set-valued functions, continuous, Lipschitz and some special types of selections, fixed point and coincidence theorems, covering set-valued maps, topological degree theory and differential inclusions. Contents: Preface Part I: Convex analysis Convex sets and their properties The convex hull of a set. The interior of convex sets The affine hull of sets. The relative interior of convex sets Separation theorems for convex sets Convex functions Closedness, boundedness, continuity, and Lipschitz property of convex functions Conjugate functions Support functions Differentiability of convex functions and the subdifferential Convex cones A little more about convex cones in infinite-dimensional spaces A problem of linear programming More about convex sets and convex hulls Part II: Set-valued analysis Introduction to the theory of topological and metric spaces The Hausdorff metric and the distance between sets Some fine properties of the Hausdorff metric Set-valued maps. Upper semicontinuous and lower semicontinuous set-valued maps A base of topology of the spaceHc(X) Measurable set-valued maps. Measurable selections and measurable choice theorems The superposition set-valued operator The Michael theorem and continuous selections. Lipschitz selections. Single-valued approximations Special selections of set-valued maps Differential inclusions Fixed points and coincidences of maps in metric spaces Stability of coincidence points and properties of covering maps Topological degree and fixed points of set-valued maps in Banach spaces Existence results for differential inclusions via the fixed point method Notation Bibliography Index
Author | : Alexander J. Zaslavski |
Publisher | : Springer Nature |
Total Pages | : 392 |
Release | : |
Genre | : |
ISBN | : 3031508793 |
Author | : Alexander J. Zaslavski |
Publisher | : Springer |
Total Pages | : 320 |
Release | : 2018-05-02 |
Genre | : Mathematics |
ISBN | : 3319774379 |
This book details approximate solutions to common fixed point problems and convex feasibility problems in the presence of perturbations. Convex feasibility problems search for a common point of a finite collection of subsets in a Hilbert space; common fixed point problems pursue a common fixed point of a finite collection of self-mappings in a Hilbert space. A variety of algorithms are considered in this book for solving both types of problems, the study of which has fueled a rapidly growing area of research. This monograph is timely and highlights the numerous applications to engineering, computed tomography, and radiation therapy planning. Totaling eight chapters, this book begins with an introduction to foundational material and moves on to examine iterative methods in metric spaces. The dynamic string-averaging methods for common fixed point problems in normed space are analyzed in Chapter 3. Dynamic string methods, for common fixed point problems in a metric space are introduced and discussed in Chapter 4. Chapter 5 is devoted to the convergence of an abstract version of the algorithm which has been called component-averaged row projections (CARP). Chapter 6 studies a proximal algorithm for finding a common zero of a family of maximal monotone operators. Chapter 7 extends the results of Chapter 6 for a dynamic string-averaging version of the proximal algorithm. In Chapters 8 subgradient projections algorithms for convex feasibility problems are examined for infinite dimensional Hilbert spaces.
Author | : Ke Chen |
Publisher | : Springer Nature |
Total Pages | : 1981 |
Release | : 2023-02-24 |
Genre | : Mathematics |
ISBN | : 3030986616 |
This handbook gathers together the state of the art on mathematical models and algorithms for imaging and vision. Its emphasis lies on rigorous mathematical methods, which represent the optimal solutions to a class of imaging and vision problems, and on effective algorithms, which are necessary for the methods to be translated to practical use in various applications. Viewing discrete images as data sampled from functional surfaces enables the use of advanced tools from calculus, functions and calculus of variations, and nonlinear optimization, and provides the basis of high-resolution imaging through geometry and variational models. Besides, optimization naturally connects traditional model-driven approaches to the emerging data-driven approaches of machine and deep learning. No other framework can provide comparable accuracy and precision to imaging and vision. Written by leading researchers in imaging and vision, the chapters in this handbook all start with gentle introductions, which make this work accessible to graduate students. For newcomers to the field, the book provides a comprehensive and fast-track introduction to the content, to save time and get on with tackling new and emerging challenges. For researchers, exposure to the state of the art of research works leads to an overall view of the entire field so as to guide new research directions and avoid pitfalls in moving the field forward and looking into the next decades of imaging and information services. This work can greatly benefit graduate students, researchers, and practitioners in imaging and vision; applied mathematicians; medical imagers; engineers; and computer scientists.
Author | : Alexander J. Zaslavski |
Publisher | : Springer Nature |
Total Pages | : 535 |
Release | : |
Genre | : |
ISBN | : 3031707109 |