Control Problems of Discrete-Time Dynamical Systems

Control Problems of Discrete-Time Dynamical Systems
Author: Yasumichi Hasegawa
Publisher: Springer
Total Pages: 241
Release: 2015-01-20
Genre: Technology & Engineering
ISBN: 3319146300

This monograph deals with control problems of discrete-time dynamical systems which include linear and nonlinear input/output relations In its present second enlarged edition the control problems of linear and non-linear dynamical systems will be solved as algebraically as possible. Adaptive control problems are newly proposed and solved for dynamical systems which satisfy the time-invariant condition. The monograph provides new results and their extensions which can also be more applicable for nonlinear dynamical systems. A new method which produces manipulated inputs is presented in the sense of state control and output control. To present the effectiveness of the method, many numerical examples of control problems are provided as well.

Dynamic Systems with Time Delays: Stability and Control

Dynamic Systems with Time Delays: Stability and Control
Author: Ju H. Park
Publisher: Springer Nature
Total Pages: 351
Release: 2019-08-29
Genre: Science
ISBN: 9811392544

This book presents up-to-date research developments and novel methodologies to solve various stability and control problems of dynamic systems with time delays. First, it provides the new introduction of integral and summation inequalities for stability analysis of nominal time-delay systems in continuous and discrete time domain, and presents corresponding stability conditions for the nominal system and an applicable nonlinear system. Next, it investigates several control problems for dynamic systems with delays including H(infinity) control problem Event-triggered control problems; Dynamic output feedback control problems; Reliable sampled-data control problems. Finally, some application topics covering filtering, state estimation, and synchronization are considered. The book will be a valuable resource and guide for graduate students, scientists, and engineers in the system sciences and control communities.

Advanced Discrete-Time Control

Advanced Discrete-Time Control
Author: Khalid Abidi
Publisher: Springer
Total Pages: 232
Release: 2015-03-25
Genre: Technology & Engineering
ISBN: 981287478X

This book covers a wide spectrum of systems such as linear and nonlinear multivariable systems as well as control problems such as disturbance, uncertainty and time-delays. The purpose of this book is to provide researchers and practitioners a manual for the design and application of advanced discrete-time controllers. The book presents six different control approaches depending on the type of system and control problem. The first and second approaches are based on Sliding Mode control (SMC) theory and are intended for linear systems with exogenous disturbances. The third and fourth approaches are based on adaptive control theory and are aimed at linear/nonlinear systems with periodically varying parametric uncertainty or systems with input delay. The fifth approach is based on Iterative learning control (ILC) theory and is aimed at uncertain linear/nonlinear systems with repeatable tasks and the final approach is based on fuzzy logic control (FLC) and is intended for highly uncertain systems with heuristic control knowledge. Detailed numerical examples are provided in each chapter to illustrate the design procedure for each control method. A number of practical control applications are also presented to show the problem solving process and effectiveness with the advanced discrete-time control approaches introduced in this book.

Formal Methods for Discrete-Time Dynamical Systems

Formal Methods for Discrete-Time Dynamical Systems
Author: Calin Belta
Publisher: Springer
Total Pages: 291
Release: 2017-03-08
Genre: Technology & Engineering
ISBN: 331950763X

This book bridges fundamental gaps between control theory and formal methods. Although it focuses on discrete-time linear and piecewise affine systems, it also provides general frameworks for abstraction, analysis, and control of more general models. The book is self-contained, and while some mathematical knowledge is necessary, readers are not expected to have a background in formal methods or control theory. It rigorously defines concepts from formal methods, such as transition systems, temporal logics, model checking and synthesis. It then links these to the infinite state dynamical systems through abstractions that are intuitive and only require basic convex-analysis and control-theory terminology, which is provided in the appendix. Several examples and illustrations help readers understand and visualize the concepts introduced throughout the book.

Constrained Control Problems of Discrete Processes

Constrained Control Problems of Discrete Processes
Author: Ngoc Phat Vu
Publisher: World Scientific
Total Pages: 236
Release: 1996
Genre: Mathematics
ISBN: 9789810227876

The book gives a novel treatment of recent advances on constrained control problems with emphasis on the controllability, reachability of dynamical discrete-time systems. The new proposed approach provides the right setting for the study of qualitative properties of general types of dynamical systems in both discrete-time and continuous-time systems with possible applications to some control engineering models. Most of the material appears for the first time in a book form. The book is addressed to advanced students, postgraduate students and researchers interested in control system theory and optimal control.

Constrained Control Problems Of Discrete Processes

Constrained Control Problems Of Discrete Processes
Author: Vu Ngoc Phat
Publisher: World Scientific
Total Pages: 230
Release: 1996-11-26
Genre: Mathematics
ISBN: 9814498459

The book gives a novel treatment of recent advances on constrained control problems with emphasis on the controllability, reachability of dynamical discrete-time systems. The new proposed approach provides the right setting for the study of qualitative properties of general types of dynamical systems in both discrete-time and continuous-time systems with possible applications to some control engineering models. Most of the material appears for the first time in a book form. The book is addressed to advanced students, postgraduate students and researchers interested in control system theory and optimal control.

Discrete-time Stochastic Systems

Discrete-time Stochastic Systems
Author: Torsten Söderström
Publisher: Springer Science & Business Media
Total Pages: 410
Release: 2002-07-26
Genre: Mathematics
ISBN: 9781852336493

This comprehensive introduction to the estimation and control of dynamic stochastic systems provides complete derivations of key results. The second edition includes improved and updated material, and a new presentation of polynomial control and new derivation of linear-quadratic-Gaussian control.

Neural Network Control of Nonlinear Discrete-Time Systems

Neural Network Control of Nonlinear Discrete-Time Systems
Author: Jagannathan Sarangapani
Publisher: CRC Press
Total Pages: 624
Release: 2018-10-03
Genre: Technology & Engineering
ISBN: 1420015451

Intelligent systems are a hallmark of modern feedback control systems. But as these systems mature, we have come to expect higher levels of performance in speed and accuracy in the face of severe nonlinearities, disturbances, unforeseen dynamics, and unstructured uncertainties. Artificial neural networks offer a combination of adaptability, parallel processing, and learning capabilities that outperform other intelligent control methods in more complex systems. Borrowing from Biology Examining neurocontroller design in discrete-time for the first time, Neural Network Control of Nonlinear Discrete-Time Systems presents powerful modern control techniques based on the parallelism and adaptive capabilities of biological nervous systems. At every step, the author derives rigorous stability proofs and presents simulation examples to demonstrate the concepts. Progressive Development After an introduction to neural networks, dynamical systems, control of nonlinear systems, and feedback linearization, the book builds systematically from actuator nonlinearities and strict feedback in nonlinear systems to nonstrict feedback, system identification, model reference adaptive control, and novel optimal control using the Hamilton-Jacobi-Bellman formulation. The author concludes by developing a framework for implementing intelligent control in actual industrial systems using embedded hardware. Neural Network Control of Nonlinear Discrete-Time Systems fosters an understanding of neural network controllers and explains how to build them using detailed derivations, stability analysis, and computer simulations.

System Theory of Continuous Time Finite Dimensional Dynamical Systems

System Theory of Continuous Time Finite Dimensional Dynamical Systems
Author: Yasumichi Hasegawa
Publisher: Springer Nature
Total Pages: 229
Release: 2019-09-26
Genre: Technology & Engineering
ISBN: 3030304809

This book discusses the realization and control problems of finite-dimensional dynamical systems which contain linear and nonlinear systems. The author focuses on algebraic methods for the discussion of control problems of linear and non-linear dynamical systems. The book contains detailed examples to showcase the effectiveness of the presented method. The target audience comprises primarily research experts in the field of control theory, but the book may also be beneficial for graduate students alike.

Formal Methods for Control of Nonlinear Systems

Formal Methods for Control of Nonlinear Systems
Author: Yinan Li
Publisher: CRC Press
Total Pages: 272
Release: 2022-12-20
Genre: Mathematics
ISBN: 1000831930

Formal methods is a field of computer science that emphasizes the use of rigorous mathematical techniques for verification and design of hardware and software systems. Analysis and design of nonlinear control design plays an important role across many disciplines of engineering and applied sciences, ranging from the control of an aircraft engine to the design of genetic circuits in synthetic biology. While linear control is a well-established subject, analysis and design of nonlinear control systems remains a challenging topic due to some of the fundamental difficulties caused by nonlinearity. Formal Methods for Control of Nonlinear Systems provides a unified computational approach to analysis and design of nonlinear systems. Features Constructive approach to nonlinear control. Rigorous specifications and validated computation. Suitable for graduate students and researchers who are interested in learning how formal methods and validated computation can be combined together to tackle nonlinear control problems with complex specifications from an algorithmic perspective. Combines mathematical rigor with practical applications.