Control Of Nonlinear Systems
Download Control Of Nonlinear Systems full books in PDF, epub, and Kindle. Read online free Control Of Nonlinear Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Jean Levine |
Publisher | : Springer Science & Business Media |
Total Pages | : 322 |
Release | : 2009-05-28 |
Genre | : Technology & Engineering |
ISBN | : 3642008399 |
This book examines control of nonlinear systems. Coverage ranges from mathematical system theory to practical industrial control applications. The author offers web-based videos illustrating some dynamical aspects and case studies in simulation.
Author | : Hassan K. Khalil |
Publisher | : Prentice Hall |
Total Pages | : 0 |
Release | : 2015 |
Genre | : Nonlinear theories |
ISBN | : 9780133499261 |
For a first course on nonlinear control that can be taught in one semester ¿ This book emerges from the award-winning book, Nonlinear Systems, but has a distinctly different mission and¿organization. While Nonlinear Systems was intended as a reference and a text on nonlinear system analysis and its application to control, this streamlined book is intended as a text for a first course on nonlinear control. In Nonlinear Control, author Hassan K. Khalil employs a writing style that is intended to make the book accessible to a wider audience without compromising the rigor of the presentation. ¿ Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It will help: Provide an Accessible Approach to Nonlinear Control: This streamlined book is intended as a text for a first course on nonlinear control that can be taught in one semester. Support Learning: Over 250 end-of-chapter exercises give students plenty of opportunities to put theory into action.
Author | : Alberto Isidori |
Publisher | : Springer Science & Business Media |
Total Pages | : 557 |
Release | : 2013-04-17 |
Genre | : Technology & Engineering |
ISBN | : 1846286158 |
The purpose of this book is to present a self-contained description of the fun damentals of the theory of nonlinear control systems, with special emphasis on the differential geometric approach. The book is intended as a graduate text as weil as a reference to scientists and engineers involved in the analysis and design of feedback systems. The first version of this book was written in 1983, while I was teach ing at the Department of Systems Science and Mathematics at Washington University in St. Louis. This new edition integrates my subsequent teaching experience gained at the University of Illinois in Urbana-Champaign in 1987, at the Carl-Cranz Gesellschaft in Oberpfaffenhofen in 1987, at the University of California in Berkeley in 1988. In addition to a major rearrangement of the last two Chapters of the first version, this new edition incorporates two additional Chapters at a more elementary level and an exposition of some relevant research findings which have occurred since 1985.
Author | : J. William Helton |
Publisher | : SIAM |
Total Pages | : 340 |
Release | : 1999-01-01 |
Genre | : Technology & Engineering |
ISBN | : 0898714400 |
H-infinity control made considerable strides toward systematizing classical control. This bookaddresses how this extends to nonlinear systems.
Author | : Dierk Schröder |
Publisher | : Springer Science & Business Media |
Total Pages | : 346 |
Release | : 2013-04-17 |
Genre | : Technology & Engineering |
ISBN | : 3662041170 |
This application-oriented monograph focuses on a novel and complex type of control systems. Written on an engineering level, including fundamentals, advanced methods and applications, the book applies techniques originating from new methods such as artificial intelligence, fuzzy logic, neural networks etc.
Author | : Shankar Sastry |
Publisher | : Springer Science & Business Media |
Total Pages | : 690 |
Release | : 2013-04-18 |
Genre | : Mathematics |
ISBN | : 1475731086 |
There has been much excitement over the emergence of new mathematical techniques for the analysis and control of nonlinear systems. In addition, great technological advances have bolstered the impact of analytic advances and produced many new problems and applications which are nonlinear in an essential way. This book lays out in a concise mathematical framework the tools and methods of analysis which underlie this diversity of applications.
Author | : Wassim M. Haddad |
Publisher | : Princeton University Press |
Total Pages | : 975 |
Release | : 2011-09-19 |
Genre | : Mathematics |
ISBN | : 1400841046 |
Nonlinear Dynamical Systems and Control presents and develops an extensive treatment of stability analysis and control design of nonlinear dynamical systems, with an emphasis on Lyapunov-based methods. Dynamical system theory lies at the heart of mathematical sciences and engineering. The application of dynamical systems has crossed interdisciplinary boundaries from chemistry to biochemistry to chemical kinetics, from medicine to biology to population genetics, from economics to sociology to psychology, and from physics to mechanics to engineering. The increasingly complex nature of engineering systems requiring feedback control to obtain a desired system behavior also gives rise to dynamical systems. Wassim Haddad and VijaySekhar Chellaboina provide an exhaustive treatment of nonlinear systems theory and control using the highest standards of exposition and rigor. This graduate-level textbook goes well beyond standard treatments by developing Lyapunov stability theory, partial stability, boundedness, input-to-state stability, input-output stability, finite-time stability, semistability, stability of sets and periodic orbits, and stability theorems via vector Lyapunov functions. A complete and thorough treatment of dissipativity theory, absolute stability theory, stability of feedback systems, optimal control, disturbance rejection control, and robust control for nonlinear dynamical systems is also given. This book is an indispensable resource for applied mathematicians, dynamical systems theorists, control theorists, and engineers.
Author | : Iasson Karafyllis |
Publisher | : Springer Science & Business Media |
Total Pages | : 401 |
Release | : 2011-04-02 |
Genre | : Technology & Engineering |
ISBN | : 0857295136 |
Recently, the subject of nonlinear control systems analysis has grown rapidly and this book provides a simple and self-contained presentation of their stability and feedback stabilization which enables the reader to learn and understand major techniques used in mathematical control theory. In particular: the important techniques of proving global stability properties are presented closely linked with corresponding methods of nonlinear feedback stabilization; a general framework of methods for proving stability is given, thus allowing the study of a wide class of nonlinear systems, including finite-dimensional systems described by ordinary differential equations, discrete-time systems, systems with delays and sampled-data systems; approaches to the proof of classical global stability properties are extended to non-classical global stability properties such as non-uniform-in-time stability and input-to-output stability; and new tools for stability analysis and control design of a wide class of nonlinear systems are introduced. The presentational emphasis of Stability and Stabilization of Nonlinear Systems is theoretical but the theory’s importance for concrete control problems is highlighted with a chapter specifically dedicated to applications and with numerous illustrative examples. Researchers working on nonlinear control theory will find this monograph of interest while graduate students of systems and control can also gain much insight and assistance from the methods and proofs detailed in this book.
Author | : Felix L. Chernous'ko |
Publisher | : Springer Science & Business Media |
Total Pages | : 398 |
Release | : 2008-09-26 |
Genre | : Technology & Engineering |
ISBN | : 3540707840 |
This book is devoted to new methods of control for complex dynamical systems and deals with nonlinear control systems having several degrees of freedom, subjected to unknown disturbances, and containing uncertain parameters. Various constraints are imposed on control inputs and state variables or their combinations. The book contains an introduction to the theory of optimal control and the theory of stability of motion, and also a description of some known methods based on these theories. Major attention is given to new methods of control developed by the authors over the last 15 years. Mechanical and electromechanical systems described by nonlinear Lagrange’s equations are considered. General methods are proposed for an effective construction of the required control, often in an explicit form. The book contains various techniques including the decomposition of nonlinear control systems with many degrees of freedom, piecewise linear feedback control based on Lyapunov’s functions, methods which elaborate and extend the approaches of the conventional control theory, optimal control, differential games, and the theory of stability. The distinctive feature of the methods developed in the book is that the c- trols obtained satisfy the imposed constraints and steer the dynamical system to a prescribed terminal state in ?nite time. Explicit upper estimates for the time of the process are given. In all cases, the control algorithms and the estimates obtained are strictly proven.
Author | : Edgar N. Sanchez |
Publisher | : CRC Press |
Total Pages | : 268 |
Release | : 2017-12-19 |
Genre | : Technology & Engineering |
ISBN | : 1466580887 |
Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). The synthesized discrete-time optimal controller can be directly implemented in real-time systems. The book also proposes the use of recurrent neural networks to model discrete-time nonlinear systems. Combined with the inverse optimal control approach, such models constitute a powerful tool to deal with uncertainties such as unmodeled dynamics and disturbances. Learn from Simulations and an In-Depth Case Study The authors include a variety of simulations to illustrate the effectiveness of the synthesized controllers for stabilization and trajectory tracking of discrete-time nonlinear systems. An in-depth case study applies the control schemes to glycemic control in patients with type 1 diabetes mellitus, to calculate the adequate insulin delivery rate required to prevent hyperglycemia and hypoglycemia levels. The discrete-time optimal and robust control techniques proposed can be used in a range of industrial applications, from aerospace and energy to biomedical and electromechanical systems. Highlighting optimal and efficient control algorithms, this is a valuable resource for researchers, engineers, and students working in nonlinear system control.