Multiple Testing Problems in Pharmaceutical Statistics

Multiple Testing Problems in Pharmaceutical Statistics
Author: Alex Dmitrienko
Publisher: CRC Press
Total Pages: 323
Release: 2009-12-08
Genre: Mathematics
ISBN: 1584889853

Useful Statistical Approaches for Addressing Multiplicity IssuesIncludes practical examples from recent trials Bringing together leading statisticians, scientists, and clinicians from the pharmaceutical industry, academia, and regulatory agencies, Multiple Testing Problems in Pharmaceutical Statistics explores the rapidly growing area of multiple c

Selected Works of E. L. Lehmann

Selected Works of E. L. Lehmann
Author: Javier Rojo
Publisher: Springer Science & Business Media
Total Pages: 1103
Release: 2012-01-16
Genre: Mathematics
ISBN: 1461414113

These volumes present a selection of Erich L. Lehmann’s monumental contributions to Statistics. These works are multifaceted. His early work included fundamental contributions to hypothesis testing, theory of point estimation, and more generally to decision theory. His work in Nonparametric Statistics was groundbreaking. His fundamental contributions in this area include results that came to assuage the anxiety of statisticians that were skeptical of nonparametric methodologies, and his work on concepts of dependence has created a large literature. The two volumes are divided into chapters of related works. Invited contributors have critiqued the papers in each chapter, and the reprinted group of papers follows each commentary. A complete bibliography that contains links to recorded talks by Erich Lehmann – and which are freely accessible to the public – and a list of Ph.D. students are also included. These volumes belong in every statistician’s personal collection and are a required holding for any institutional library.

Multiple Testing Procedures with Applications to Genomics

Multiple Testing Procedures with Applications to Genomics
Author: Sandrine Dudoit
Publisher: Springer Science & Business Media
Total Pages: 611
Release: 2007-12-18
Genre: Science
ISBN: 0387493174

This book establishes the theoretical foundations of a general methodology for multiple hypothesis testing and discusses its software implementation in R and SAS. These are applied to a range of problems in biomedical and genomic research, including identification of differentially expressed and co-expressed genes in high-throughput gene expression experiments; tests of association between gene expression measures and biological annotation metadata; sequence analysis; and genetic mapping of complex traits using single nucleotide polymorphisms. The procedures are based on a test statistics joint null distribution and provide Type I error control in testing problems involving general data generating distributions, null hypotheses, and test statistics.

Medical Biostatistics for Complex Diseases

Medical Biostatistics for Complex Diseases
Author: Frank Emmert-Streib
Publisher: John Wiley & Sons
Total Pages: 412
Release: 2010-03-30
Genre: Medical
ISBN: 9783527630349

A collection of highly valuable statistical and computational approaches designed for developing powerful methods to analyze large-scale high-throughput data derived from studies of complex diseases. Such diseases include cancer and cardiovascular disease, and constitute the major health challenges in industrialized countries. They are characterized by the systems properties of gene networks and their interrelations, instead of individual genes, whose malfunctioning manifests in pathological phenotypes, thus making the analysis of the resulting large data sets particularly challenging. This is why novel approaches are needed to tackle this problem efficiently on a systems level. Written by computational biologists and biostatisticians, this book is an invaluable resource for a large number of researchers working on basic but also applied aspects of biomedical data analysis emphasizing the pathway level.

Statistical Bioinformatics with R

Statistical Bioinformatics with R
Author: Sunil K. Mathur
Publisher: Academic Press
Total Pages: 337
Release: 2009-12-21
Genre: Mathematics
ISBN: 0123751055

Statistical Bioinformatics provides a balanced treatment of statistical theory in the context of bioinformatics applications. Designed for a one or two semester senior undergraduate or graduate bioinformatics course, the text takes a broad view of the subject – not just gene expression and sequence analysis, but a careful balance of statistical theory in the context of bioinformatics applications. The inclusion of R & SAS code as well as the development of advanced methodology such as Bayesian and Markov models provides students with the important foundation needed to conduct bioinformatics. - Integrates biological, statistical and computational concepts - Inclusion of R & SAS code - Provides coverage of complex statistical methods in context with applications in bioinformatics - Exercises and examples aid teaching and learning presented at the right level - Bayesian methods and the modern multiple testing principles in one convenient book

Statistical Paradigms: Recent Advances And Reconciliations

Statistical Paradigms: Recent Advances And Reconciliations
Author: Ashis Sengupta
Publisher: World Scientific
Total Pages: 308
Release: 2014-10-03
Genre: Mathematics
ISBN: 9814644110

This volume consists of a collection of research articles on classical and emerging Statistical Paradigms — parametric, non-parametric and semi-parametric, frequentist and Bayesian — encompassing both theoretical advances and emerging applications in a variety of scientific disciplines. For advances in theory, the topics include: Bayesian Inference, Directional Data Analysis, Distribution Theory, Econometrics and Multiple Testing Procedures. The areas in emerging applications include: Bioinformatics, Factorial Experiments and Linear Models, Hotspot Geoinformatics and Reliability.

Analysis of Clinical Trials Using SAS

Analysis of Clinical Trials Using SAS
Author: Alex Dmitrienko
Publisher: SAS Institute
Total Pages: 410
Release: 2017-07-17
Genre: Computers
ISBN: 1635261465

Analysis of Clinical Trials Using SAS®: A Practical Guide, Second Edition bridges the gap between modern statistical methodology and real-world clinical trial applications. Tutorial material and step-by-step instructions illustrated with examples from actual trials serve to define relevant statistical approaches, describe their clinical trial applications, and implement the approaches rapidly and efficiently using the power of SAS. Topics reflect the International Conference on Harmonization (ICH) guidelines for the pharmaceutical industry and address important statistical problems encountered in clinical trials. Commonly used methods are covered, including dose-escalation and dose-finding methods that are applied in Phase I and Phase II clinical trials, as well as important trial designs and analysis strategies that are employed in Phase II and Phase III clinical trials, such as multiplicity adjustment, data monitoring, and methods for handling incomplete data. This book also features recommendations from clinical trial experts and a discussion of relevant regulatory guidelines. This new edition includes more examples and case studies, new approaches for addressing statistical problems, and the following new technological updates: SAS procedures used in group sequential trials (PROC SEQDESIGN and PROC SEQTEST) SAS procedures used in repeated measures analysis (PROC GLIMMIX and PROC GEE) macros for implementing a broad range of randomization-based methods in clinical trials, performing complex multiplicity adjustments, and investigating the design and analysis of early phase trials (Phase I dose-escalation trials and Phase II dose-finding trials) Clinical statisticians, research scientists, and graduate students in biostatistics will greatly benefit from the decades of clinical research experience and the ready-to-use SAS macros compiled in this book.

Macroeconomic Forecasting in the Era of Big Data

Macroeconomic Forecasting in the Era of Big Data
Author: Peter Fuleky
Publisher: Springer Nature
Total Pages: 716
Release: 2019-11-28
Genre: Business & Economics
ISBN: 3030311503

This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.

Elements of Data Science, Machine Learning, and Artificial Intelligence Using R

Elements of Data Science, Machine Learning, and Artificial Intelligence Using R
Author: Frank Emmert-Streib
Publisher: Springer Nature
Total Pages: 582
Release: 2023-10-03
Genre: Technology & Engineering
ISBN: 3031133390

The textbook provides students with tools they need to analyze complex data using methods from data science, machine learning and artificial intelligence. The authors include both the presentation of methods along with applications using the programming language R, which is the gold standard for analyzing data. The authors cover all three main components of data science: computer science; mathematics and statistics; and domain knowledge. The book presents methods and implementations in R side-by-side, allowing the immediate practical application of the learning concepts. Furthermore, this teaches computational thinking in a natural way. The book includes exercises, case studies, Q&A and examples.