Contemporary Perspectives On Advanced Statistical Data Analysis
Download Contemporary Perspectives On Advanced Statistical Data Analysis full books in PDF, epub, and Kindle. Read online free Contemporary Perspectives On Advanced Statistical Data Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Kenneth D. Lawrence |
Publisher | : IAP |
Total Pages | : 237 |
Release | : 2015-07-01 |
Genre | : Mathematics |
ISBN | : 1681230895 |
The series, Contemporary Perspectives on Data Mining, is composed of blind refereed scholarly research methods and applications of data mining. This series will be targeted both at the academic community, as well as the business practitioner. Data mining seeks to discover knowledge from vast amounts of data with the use of statistical and mathematical techniques. The knowledge is extracted from this data by examining the patterns of the data, whether they be associations of groups or things, predictions, sequential relationships between time order events or natural groups. Data mining applications are in marketing (customer loyalty, identifying profitable customers, instore promotions, e-commerce populations); in business (teaching data mining, efficiency of the Chinese automobile industry, moderate asset allocation funds); and techniques (veterinary predictive models, data integrity in the cloud, irregular pattern detection in a mobility network and road safety modeling.)
Author | : Eric D. Feigelson |
Publisher | : Cambridge University Press |
Total Pages | : 495 |
Release | : 2012-07-12 |
Genre | : Science |
ISBN | : 052176727X |
Modern Statistical Methods for Astronomy: With R Applications.
Author | : Luc Anselin |
Publisher | : Springer Science & Business Media |
Total Pages | : 291 |
Release | : 2009-12-24 |
Genre | : Business & Economics |
ISBN | : 3642019765 |
Spatial data analysis has seen explosive growth in recent years. Both in mainstream statistics and econometrics as well as in many applied ?elds, the attention to space, location, and interaction has become an important feature of scholarly work. The methodsdevelopedto dealwith problemsofspatialpatternrecognition,spatialau- correlation, and spatial heterogeneity have seen greatly increased adoption, in part due to the availability of user friendlydesktopsoftware. Throughhis theoretical and appliedwork,ArthurGetishasbeena majorcontributing?gureinthisdevelopment. In this volume, we take both a retrospective and a prospective view of the ?eld. We use the occasion of the retirement and move to emeritus status of Arthur Getis to highlight the contributions of his work. In addition, we aim to place it into perspective in light of the current state of the art and future directions in spatial data analysis. To this end, we elected to combine reprints of selected classic contributions by Getiswithchapterswrittenbykeyspatialscientists.Thesescholarswerespeci?cally invited to react to the earlier work by Getis with an eye toward assessing its impact, tracing out the evolution of related research, and to re?ect on the future broadening of spatial analysis. The organizationof the book follows four main themes in Getis’ contributions: • Spatial analysis • Pattern analysis • Local statistics • Applications For each of these themes, the chapters provide a historical perspective on early methodological developments and theoretical insights, assessments of these c- tributions in light of the current state of the art, as well as descriptions of new techniques and applications.
Author | : David Caster Hoaglin |
Publisher | : Mathematical Association of America (MAA) |
Total Pages | : 200 |
Release | : 1992 |
Genre | : Mathematics |
ISBN | : |
This book is a must for anyone who teaches statistics, particularly those who teach beginning statistics - mathematicians, social scientists, engineers - as well as graduate students and others new to the field. The authors focus on topics central to the teaching of statistics for beginners, and other expositions that are guided by the current state of statistical research and practice. Statistical practice has changed radically during the past generation under the impact of ever cheaper and more accessible computing power. Beginning instruction has lagged behind the evolution of the field. Software now enables students to shortcut unpleasant calculations, but this is only the most obvious consequences of changing statistical practice, the content and emphases of statistics instruction still needs much rethinking. This volume assembles nine new essays on important topics in present-day statistics at the college with various levels of mathematics preparation, and from diverse disciplinary backgrounds. Accordingly the chapters present modern perspectives on central aspects of statistics and emphasize the conceptual content that should accompany all varieties of beginning instruction. The books opens with a contemporary overview of statistics as the science of data - a view much broader than the "inference from data" emphasized by much traditional teaching. The next two chapters discuss the philosophy and some of the tools used in data analysis and describe the impact of computing on data analysis and inference and its implication for teaching. The book conlucdes with introductions to diagnostics and to the alternative approach embodied in resistent and robut procedures. -- from back cover.
Author | : Peter Bühlmann |
Publisher | : Springer Science & Business Media |
Total Pages | : 568 |
Release | : 2011-06-08 |
Genre | : Mathematics |
ISBN | : 364220192X |
Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.
Author | : Eugene Demidenko |
Publisher | : John Wiley & Sons |
Total Pages | : 880 |
Release | : 2019-11-12 |
Genre | : Mathematics |
ISBN | : 1118387988 |
Advanced Statistics with Applications in R fills the gap between several excellent theoretical statistics textbooks and many applied statistics books where teaching reduces to using existing packages. This book looks at what is under the hood. Many statistics issues including the recent crisis with p-value are caused by misunderstanding of statistical concepts due to poor theoretical background of practitioners and applied statisticians. This book is the product of a forty-year experience in teaching of probability and statistics and their applications for solving real-life problems. There are more than 442 examples in the book: basically every probability or statistics concept is illustrated with an example accompanied with an R code. Many examples, such as Who said π? What team is better? The fall of the Roman empire, James Bond chase problem, Black Friday shopping, Free fall equation: Aristotle or Galilei, and many others are intriguing. These examples cover biostatistics, finance, physics and engineering, text and image analysis, epidemiology, spatial statistics, sociology, etc. Advanced Statistics with Applications in R teaches students to use theory for solving real-life problems through computations: there are about 500 R codes and 100 datasets. These data can be freely downloaded from the author's website dartmouth.edu/~eugened. This book is suitable as a text for senior undergraduate students with major in statistics or data science or graduate students. Many researchers who apply statistics on the regular basis find explanation of many fundamental concepts from the theoretical perspective illustrated by concrete real-world applications.
Author | : Andrew Gelman |
Publisher | : CRC Press |
Total Pages | : 677 |
Release | : 2013-11-01 |
Genre | : Mathematics |
ISBN | : 1439840954 |
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Author | : Michael Friendly |
Publisher | : CRC Press |
Total Pages | : 700 |
Release | : 2015-12-16 |
Genre | : Mathematics |
ISBN | : 1498725864 |
An Applied Treatment of Modern Graphical Methods for Analyzing Categorical DataDiscrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical meth
Author | : Jeanne Kowalski |
Publisher | : John Wiley & Sons |
Total Pages | : 402 |
Release | : 2008-01-28 |
Genre | : Mathematics |
ISBN | : 0470186453 |
A timely and applied approach to the newly discovered methods and applications of U-statistics Built on years of collaborative research and academic experience, Modern Applied U-Statistics successfully presents a thorough introduction to the theory of U-statistics using in-depth examples and applications that address contemporary areas of study including biomedical and psychosocial research. Utilizing a "learn by example" approach, this book provides an accessible, yet in-depth, treatment of U-statistics, as well as addresses key concepts in asymptotic theory by integrating translational and cross-disciplinary research. The authors begin with an introduction of the essential and theoretical foundations of U-statistics such as the notion of convergence in probability and distribution, basic convergence results, stochastic Os, inference theory, generalized estimating equations, as well as the definition and asymptotic properties of U-statistics. With an emphasis on nonparametric applications when and where applicable, the authors then build upon this established foundation in order to equip readers with the knowledge needed to understand the modern-day extensions of U-statistics that are explored in subsequent chapters. Additional topical coverage includes: Longitudinal data modeling with missing data Parametric and distribution-free mixed-effect and structural equation models A new multi-response based regression framework for non-parametric statistics such as the product moment correlation, Kendall's tau, and Mann-Whitney-Wilcoxon rank tests A new class of U-statistic-based estimating equations (UBEE) for dependent responses Motivating examples, in-depth illustrations of statistical and model-building concepts, and an extensive discussion of longitudinal study designs strengthen the real-world utility and comprehension of this book. An accompanying Web site features SAS? and S-Plus? program codes, software applications, and additional study data. Modern Applied U-Statistics accommodates second- and third-year students of biostatistics at the graduate level and also serves as an excellent self-study for practitioners in the fields of bioinformatics and psychosocial research.
Author | : Nikos Ntoumanis |
Publisher | : John Wiley & Sons |
Total Pages | : 312 |
Release | : 2016-01-19 |
Genre | : Medical |
ISBN | : 1118962052 |
"Ntoumanis and Myers have done sport and exercise science researchers and students a tremendous service in producing An Introduction to Intermediate and Advanced Statistical Analyses for Sport and Exercise Scientists. This book has an outstanding compilation of comprehensible chapters dealing with the important concepts and technical minutia of the statistical analyses that sport and exercise science scholars use (or should be using!) in their efforts to conduct meaningful research in the field. It is a resource that all sport and exercise scientists and their students should have on their book shelves." —Robert Eklund, School of Sport, University of Stirling, UK "Motivating, to have a statistics text devoted to enabling researchers studying sport and exercise science to apply the most sophisticated analytical techniques to their data. Authors hit the mark between using technical language as necessary and user-friendly terms or translations to keep users encouraged. Text covers traditional and well-used tools but also less common and more complex tools, but always with familiar examples to make their explanations come alive. As a dynamic systems theorist and developmentalist, I would love to see more researchers in my area create study designs that would enable the use of tools outlined here, such as multilevel structural equation modeling (MSEM) or mediation & moderation analyses, to uncover cascades of relations among subsystems contributing to motor performance, over time. This text can facilitate that outcome." —Beverly D. Ulrich, School of Kinesiology, University of Michigan, USA "The domain of quantitative methods is constantly evolving and expanding. This means that there is tremendous pressure on researchers to stay current, both in terms of best practices and improvements in more traditional methods as well as increasingly complex new methods. With this volume Ntoumanis and Myers present a nice cross-section of both, helping sport and exercise science researchers to address old questions in better ways, and, even more excitingly, to address new questions entirely. I have no doubt that this volume will quickly become a lovingly dog-eared companion for students and researchers, helping them to continue to move the field forward." —Gregory R. Hancock, University of Maryland and Center for Integrated Latent Variable Research (CILVR), USA