Connectionist Modelling in Cognitive Neuropsychology

Connectionist Modelling in Cognitive Neuropsychology
Author: David C. Plaut
Publisher: Psychology Press
Total Pages: 172
Release: 1994
Genre: Alexia
ISBN: 9780863773365

This title presents the most comprehensive existing "case study" of how the effects of damage in connectionist models can replicate the patterns of cognitive impairments that can arise in humans as a result of brain damage.

Connectionist Models in Cognitive Psychology

Connectionist Models in Cognitive Psychology
Author: George Houghton
Publisher: Psychology Press
Total Pages: 524
Release: 2004-08-02
Genre: Psychology
ISBN: 1135431140

Connectionist Models in Cognitive Psychology is a state-of-the-art review of neural network modelling in core areas of cognitive psychology including: memory and learning, language (written and spoken), cognitive development, cognitive control, attention and action. The chapters discuss neural network models in a clear and accessible style, with an emphasis on the relationship between the models and relevant experimental data drawn from experimental psychology, neuropsychology and cognitive neuroscience. These lucid high-level contributions will serve as introductory articles for postgraduates and researchers whilst being of great use to undergraduates with an interest in the area of connectionist modelling.

Introduction to Connectionist Modelling of Cognitive Processes

Introduction to Connectionist Modelling of Cognitive Processes
Author: Peter McLeod
Publisher: Oxford University Press, USA
Total Pages: 388
Release: 1998-01-01
Genre: Science
ISBN: 9780198524274

Describes the principles of connectionist modelling, and its application in understanding how the brain produces speech, forms memories, recognizes faces, and how intellect develops and deteriorates after brain damage.

Connectionist Psychology

Connectionist Psychology
Author: Rob Ellis
Publisher: Psychology Press
Total Pages: 716
Release: 1999
Genre: Cognition
ISBN: 9780863777875

This textbook provides an introduction and review of connectionist models applied to psychological topics. Chapters include basic reviews of connectionist models, their properties and their attributes. The application of these models to the domains of perception, memory, attention, word processing, higher language processing, and cognitive neuropsychology is then reviewed.

Fundamentals of Neural Network Modeling

Fundamentals of Neural Network Modeling
Author: Randolph W. Parks
Publisher: MIT Press
Total Pages: 450
Release: 1998
Genre: Cognition
ISBN: 9780262161756

Provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. Over the past few years, computer modeling has become more prevalent in the clinical sciences as an alternative to traditional symbol-processing models. This book provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. It is intended to make the neural network approach accessible to practicing neuropsychologists, psychologists, neurologists, and psychiatrists. It will also be a useful resource for computer scientists, mathematicians, and interdisciplinary cognitive neuroscientists. The editors (in their introduction) and contributors explain the basic concepts behind modeling and avoid the use of high-level mathematics. The book is divided into four parts. Part I provides an extensive but basic overview of neural network modeling, including its history, present, and future trends. It also includes chapters on attention, memory, and primate studies. Part II discusses neural network models of behavioral states such as alcohol dependence, learned helplessness, depression, and waking and sleeping. Part III presents neural network models of neuropsychological tests such as the Wisconsin Card Sorting Task, the Tower of Hanoi, and the Stroop Test. Finally, part IV describes the application of neural network models to dementia: models of acetycholine and memory, verbal fluency, Parkinsons disease, and Alzheimer's disease. Contributors J. Wesson Ashford, Rajendra D. Badgaiyan, Jean P. Banquet, Yves Burnod, Nelson Butters, John Cardoso, Agnes S. Chan, Jean-Pierre Changeux, Kerry L. Coburn, Jonathan D. Cohen, Laurent Cohen, Jose L. Contreras-Vidal, Antonio R. Damasio, Hanna Damasio, Stanislas Dehaene, Martha J. Farah, Joaquin M. Fuster, Philippe Gaussier, Angelika Gissler, Dylan G. Harwood, Michael E. Hasselmo, J, Allan Hobson, Sam Leven, Daniel S. Levine, Debra L. Long, Roderick K. Mahurin, Raymond L. Ownby, Randolph W. Parks, Michael I. Posner, David P. Salmon, David Servan-Schreiber, Chantal E. Stern, Jeffrey P. Sutton, Lynette J. Tippett, Daniel Tranel, Bradley Wyble

Connectionist Models of Memory and Language (PLE: Memory)

Connectionist Models of Memory and Language (PLE: Memory)
Author: Joseph P. Levy
Publisher: Psychology Press
Total Pages: 353
Release: 2014-05-09
Genre: Psychology
ISBN: 1317744683

Connectionist modelling and neural network applications had become a major sub-field of cognitive science by the mid-1990s. In this ground-breaking book, originally published in 1995, leading connectionists shed light on current approaches to memory and language modelling at the time. The book is divided into four sections: Memory; Reading; Computation and statistics; Speech and audition. Each section is introduced and set in context by the editors, allowing a wide range of language and memory issues to be addressed in one volume. This authoritative advanced level book will still be of interest for all engaged in connectionist research and the related areas of cognitive science concerned with language and memory.

Modelling High-level Cognitive Processes

Modelling High-level Cognitive Processes
Author: Richard P. Cooper With Contributi
Publisher: Psychology Press
Total Pages: 419
Release: 2013-05-13
Genre: Psychology
ISBN: 1135646821

This book is a practical guide to building computational models of high-level cognitive processes and systems. High-level processes are those central cognitive processes involved in thinking, reasoning, planning, and so on. These processes appear to share representational and processing requirements, and it is for this reason that they are considered together in this text. The book is divided into three parts. Part I considers foundational and background issues. Part II provides a series of case studies spanning a range of cognitive domains. Part III reflects upon issues raised by the case studies. Teachers of cognitive modeling may use material from Part I to structure lectures and practical sessions, with chapters in Part II forming the basis of in-depth student projects. All models discussed in this book are developed within the COGENT environments. COGENT provides a graphical interface in which models may be sketched as "box and arrow" diagrams and is both a useful teaching tool and a productive research tool. As such, this book is designed to be of use to both students of cognitive modeling and active researchers. For students, the book provides essential background material plus an extensive set of example models, exercises and project material. Researchers of both symbolic and connectionist persuasions will find the book of interest for its approach to cognitive modeling, which emphasizes methodological issues. They will also find that the COGENT environment itself has much to offer.

Connectionist Modeling and Brain Function

Connectionist Modeling and Brain Function
Author: Stephen José Hanson
Publisher: Bradford Book
Total Pages: 448
Release: 1990
Genre: Computers
ISBN:

Bringing together contributions in biology, neuroscience, computer science, physics, and psychology, this book offers a solid tutorial on current research activity in connectionist-inspired biology-based modeling. It describes specific experimental approaches and also confronts general issues related to learning associative memory, and sensorimotor development. Introductory chapters by editors Hanson and Olson, along with Terrence Sejnowski, Christof Koch, and Patricia S. Churchland, provide an overview of computational neuroscience, establish the distinction between "realistic" brain models and "simplified" brain models, provide specific examples of each, and explain why each approach might be appropriate in a given context. The remaining chapters are organized so that material on the anatomy and physiology of a specific part of the brain precedes the presentation of modeling studies. The modeling itself ranges from simplified models to more realistic models and provides examples of constraints arising from known brain detail as well as choices modelers face when including or excluding such constraints. There are three sections, each focused on a key area where biology and models have converged. Stephen Jose Hanson is Member of Technical Staff, Bellcore, and Visiting Faculty, Cognitive Science Laboratory, Princeton University. Carl R. Olson is Assistant Professor, Department of Psychology at Princeton Connectionist Modeling and Brain Functionis included in the Network Modeling and Connectionism series, edited by Jeffrey Elman.

Computational Explorations in Cognitive Neuroscience

Computational Explorations in Cognitive Neuroscience
Author: Randall C. O'Reilly
Publisher: MIT Press
Total Pages: 540
Release: 2000-08-28
Genre: Medical
ISBN: 9780262650540

This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the computational cognitive neuroscience. The goal of computational cognitive neuroscience is to understand how the brain embodies the mind by using biologically based computational models comprising networks of neuronlike units. This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the field. The neural units in the simulations use equations based directly on the ion channels that govern the behavior of real neurons, and the neural networks incorporate anatomical and physiological properties of the neocortex. Thus the text provides the student with knowledge of the basic biology of the brain as well as the computational skills needed to simulate large-scale cognitive phenomena. The text consists of two parts. The first part covers basic neural computation mechanisms: individual neurons, neural networks, and learning mechanisms. The second part covers large-scale brain area organization and cognitive phenomena: perception and attention, memory, language, and higher-level cognition. The second part is relatively self-contained and can be used separately for mechanistically oriented cognitive neuroscience courses. Integrated throughout the text are more than forty different simulation models, many of them full-scale research-grade models, with friendly interfaces and accompanying exercises. The simulation software (PDP++, available for all major platforms) and simulations can be downloaded free of charge from the Web. Exercise solutions are available, and the text includes full information on the software.