Geometri?eskie svojstva krivyh vtorogo porâdka

Geometri?eskie svojstva krivyh vtorogo porâdka
Author: Arseny V. Akopyan
Publisher: American Mathematical Soc.
Total Pages: 148
Release:
Genre: Mathematics
ISBN: 9780821884324

"Geometry Of Conics deals with the properties of conics (plane curves of second degree) that can be formulated and proved using only elementary geometry. Starting with the well-known optical properties of conics, this book moves to less trivial results, both classical and contemporary. It demonstrates the advantage of purely geometric methods of studying conics."--Publisher's website.

Analytical Conics

Analytical Conics
Author: Barry Spain
Publisher: Courier Corporation
Total Pages: 164
Release: 2007-01-01
Genre: Mathematics
ISBN: 0486457737

This concise text introduces students to analytical geometry, covering basic ideas and methods. Readily intelligible to any student with a sound mathematical background, it is designed both for undergraduates and for math majors. It will prove particularly valuable in preparing readers for more advanced treatments. The text begins with an overview of the analytical geometry of the straight line, circle, and the conics in their standard forms. It proceeds to discussions of translations and rotations of axes, and of the general equation of the second degree. The concept of the line at infinity is introduced, and the main properties of conics and pencils of conics are derived from the general equation. The fundamentals of cross-ratio, homographic correspondence, and line-coordinates are explored, including applications of the latter to focal properties. The final chapter provides a compact account of generalized homogeneous coordinates, and a helpful appendix presents solutions to many of the examples.

Practical Conic Sections

Practical Conic Sections
Author: J. W. Downs
Publisher: Courier Corporation
Total Pages: 116
Release: 2012-10-16
Genre: Mathematics
ISBN: 0486148882

Using examples from everyday life, this text studies ellipses, parabolas, and hyperbolas. Explores their ancient origins and describes the reflective properties and roles of curves in design applications. 1993 edition. Includes 98 figures.

Conics

Conics
Author: Keith Kendig
Publisher: American Mathematical Soc.
Total Pages: 403
Release: 2020-07-29
Genre: Mathematics
ISBN: 1470456834

This book engages the reader in a journey of discovery through a spirited discussion among three characters: philosopher, teacher, and student. Throughout the book, philosopher pursues his dream of a unified theory of conics, where exceptions are banished. With a helpful teacher and examplehungry student, the trio soon finds that conics reveal much of their beauty when viewed over the complex numbers. It is profusely illustrated with pictures, workedout examples, and a CD containing 36 applets. Conics is written in an easy, conversational style, and many historical tidbits and other points of interest are scattered throughout the text. Many students can selfstudy the book without outside help. This book is ideal for anyone having a little exposure to linear algebra and complex numbers.

Algebra and Trigonometry

Algebra and Trigonometry
Author: Jay P. Abramson
Publisher:
Total Pages: 1564
Release: 2015-02-13
Genre: Algebra
ISBN: 9781938168376

"The text is suitable for a typical introductory algebra course, and was developed to be used flexibly. While the breadth of topics may go beyond what an instructor would cover, the modular approach and the richness of content ensures that the book meets the needs of a variety of programs."--Page 1.

Linear Algebra and Analytic Geometry for Physical Sciences

Linear Algebra and Analytic Geometry for Physical Sciences
Author: Giovanni Landi
Publisher: Springer
Total Pages: 348
Release: 2018-05-12
Genre: Science
ISBN: 3319783610

A self-contained introduction to finite dimensional vector spaces, matrices, systems of linear equations, spectral analysis on euclidean and hermitian spaces, affine euclidean geometry, quadratic forms and conic sections. The mathematical formalism is motivated and introduced by problems from physics, notably mechanics (including celestial) and electro-magnetism, with more than two hundreds examples and solved exercises.Topics include: The group of orthogonal transformations on euclidean spaces, in particular rotations, with Euler angles and angular velocity. The rigid body with its inertia matrix. The unitary group. Lie algebras and exponential map. The Dirac’s bra-ket formalism. Spectral theory for self-adjoint endomorphisms on euclidean and hermitian spaces. The Minkowski spacetime from special relativity and the Maxwell equations. Conic sections with the use of eccentricity and Keplerian motions. An appendix collects basic algebraic notions like group, ring and field; and complex numbers and integers modulo a prime number.The book will be useful to students taking a physics or engineer degree for a basic education as well as for students who wish to be competent in the subject and who may want to pursue a post-graduate qualification.

Elementary Matrix Theory

Elementary Matrix Theory
Author: Howard Eves
Publisher: Courier Corporation
Total Pages: 356
Release: 2012-04-30
Genre: Mathematics
ISBN: 0486150275

The usefulness of matrix theory as a tool in disciplines ranging from quantum mechanics to psychometrics is widely recognized, and courses in matrix theory are increasingly a standard part of the undergraduate curriculum. This outstanding text offers an unusual introduction to matrix theory at the undergraduate level. Unlike most texts dealing with the topic, which tend to remain on an abstract level, Dr. Eves' book employs a concrete elementary approach, avoiding abstraction until the final chapter. This practical method renders the text especially accessible to students of physics, engineering, business and the social sciences, as well as math majors. Although the treatment is fundamental — no previous courses in abstract algebra are required — it is also flexible: each chapter includes special material for advanced students interested in deeper study or application of the theory. The book begins with preliminary remarks that set the stage for the author's concrete approach to matrix theory and the consideration of matrices as hypercomplex numbers. Dr. Eves then goes on to cover fundamental concepts and operations, equivalence, determinants, matrices with polynomial elements, similarity and congruence. A final optional chapter considers matrix theory from a generalized or abstract viewpoint, extending it to arbitrary number rings and fields, vector spaces and linear transformations of vector spaces. The author's concluding remarks direct the interested student to possible avenues of further study in matrix theory, while an extensive bibliography rounds out the book. Students of matrix theory will especially appreciate the many excellent problems (solutions not provided) included in each chapter, which are not just routine calculation exercises, but involve proof and extension of the concepts and material of the text. Scientists, engineers, economists and others whose work involves this important area of mathematics, will welcome the variety of special types of matrices and determinants discussed, which make the book not only a comprehensive introduction to the field, but a valuable resource and reference work.