Conformal Invariance and Critical Phenomena

Conformal Invariance and Critical Phenomena
Author: Malte Henkel
Publisher: Springer Science & Business Media
Total Pages: 433
Release: 2013-03-14
Genre: Science
ISBN: 3662039370

Critical phenomena arise in a wide variety of physical systems. Classi cal examples are the liquid-vapour critical point or the paramagnetic ferromagnetic transition. Further examples include multicomponent fluids and alloys, superfluids, superconductors, polymers and fully developed tur bulence and may even extend to the quark-gluon plasma and the early uni verse as a whole. Early theoretical investigators tried to reduce the problem to a very small number of degrees of freedom, such as the van der Waals equation and mean field approximations, culminating in Landau's general theory of critical phenomena. Nowadays, it is understood that the common ground for all these phenomena lies in the presence of strong fluctuations of infinitely many coupled variables. This was made explicit first through the exact solution of the two-dimensional Ising model by Onsager. Systematic subsequent developments have been leading to the scaling theories of critical phenomena and the renormalization group which allow a precise description of the close neighborhood of the critical point, often in good agreement with experiments. In contrast to the general understanding a century ago, the presence of fluctuations on all length scales at a critical point is emphasized today. This can be briefly summarized by saying that at a critical point a system is scale invariant. In addition, conformal invaTiance permits also a non-uniform, local rescal ing, provided only that angles remain unchanged.

Introduction to Conformal Invariance and Its Applications to Critical Phenomena

Introduction to Conformal Invariance and Its Applications to Critical Phenomena
Author: Philippe Christe
Publisher: Springer Science & Business Media
Total Pages: 276
Release: 1993-04-13
Genre: Science
ISBN: 3540565043

The history of critical phenomena goes back to the year 1869 when Andrews discovered the critical point of carbon dioxide, located at about 31°C and 73 atmospheres pressure. In the neighborhood ofthis point the carbon dioxide was observed to become opalescent, that is, light is strongly scattered. This is nowadays interpreted as comingfrom the strong fluctuations of the system close to the critical point. Subsequently, a wide varietyofphysicalsystems were realized to display critical points as well. Ofparticular importance was the observation of a critical point in ferromagnetic iron by Curie. Further examples include multicomponent fluids and alloys, superfluids, superconductors, polymers and may even extend to the quark-gluon plasmaand the early universe as a whole. Early theoretical investigationstried to reduce the problem to a very small number of degrees of freedom, such as the van der Waals equation and mean field approximations and culminating in Landau's general theory of critical phenomena. In a dramatic development, Onsager's exact solutionofthe two-dimensional Ising model made clear the important role of the critical fluctuations. Their role was taken into account in the subsequent developments leading to the scaling theories of critical phenomena and the renormalization group. These developements have achieved a precise description of the close neighborhood of the critical point and results are often in good agreement with experiments. In contrast to the general understanding a century ago, the presence of fluctuations on all length scales at a critical point is today emphasized.

Introduction to Conformal Invariance and Its Applications to Critical Phenomena

Introduction to Conformal Invariance and Its Applications to Critical Phenomena
Author: Philippe Christe
Publisher: Springer Science & Business Media
Total Pages: 260
Release: 2008-09-11
Genre: Science
ISBN: 3540475753

The history of critical phenomena goes back to the year 1869 when Andrews discovered the critical point of carbon dioxide, located at about 31°C and 73 atmospheres pressure. In the neighborhood ofthis point the carbon dioxide was observed to become opalescent, that is, light is strongly scattered. This is nowadays interpreted as comingfrom the strong fluctuations of the system close to the critical point. Subsequently, a wide varietyofphysicalsystems were realized to display critical points as well. Ofparticular importance was the observation of a critical point in ferromagnetic iron by Curie. Further examples include multicomponent fluids and alloys, superfluids, superconductors, polymers and may even extend to the quark-gluon plasmaand the early universe as a whole. Early theoretical investigationstried to reduce the problem to a very small number of degrees of freedom, such as the van der Waals equation and mean field approximations and culminating in Landau's general theory of critical phenomena. In a dramatic development, Onsager's exact solutionofthe two-dimensional Ising model made clear the important role of the critical fluctuations. Their role was taken into account in the subsequent developments leading to the scaling theories of critical phenomena and the renormalization group. These developements have achieved a precise description of the close neighborhood of the critical point and results are often in good agreement with experiments. In contrast to the general understanding a century ago, the presence of fluctuations on all length scales at a critical point is today emphasized.

Conformal Invariance And Applications To Statistical Mechanics

Conformal Invariance And Applications To Statistical Mechanics
Author: C Itzykson
Publisher: World Scientific
Total Pages: 992
Release: 1998-09-29
Genre:
ISBN: 9814507598

This volume contains Introductory Notes and major reprints on conformal field theory and its applications to 2-dimensional statistical mechanics of critical phenomena. The subject relates to many different areas in contemporary physics and mathematics, including string theory, integrable systems, representations of infinite Lie algebras and automorphic functions.

Conformal Invariance and String Theory

Conformal Invariance and String Theory
Author: Petre Dita
Publisher: Elsevier
Total Pages: 575
Release: 2012-12-02
Genre: Science
ISBN: 0323145574

Conformal Invariance and String Theory is an account of the series of lectures held in Summer School regarding Conformal Invariance and String Theory in September 1987. The purpose of the lectures is to present the important problems and results in these two areas of theoretical physics. The text is divided into two major parts. Part I deals with implications of conformal invariance in studying two-dimensional systems. Part II meanwhile presents lectures regarding the advances in string theory and other related topics.Also included in the text is a part dedicated to the topic of determinants. This topic is discussed in two parts; the first focuses on the determinants in the finite dimensional case, while the second talks about Fredholm determinants. The book is a helpful source of reference to students and researchers in the field of physics, specifically quantum and theoretical.

Conformal Field Theory

Conformal Field Theory
Author: Philippe Francesco
Publisher: Springer Science & Business Media
Total Pages: 908
Release: 2012-12-06
Genre: Science
ISBN: 1461222567

Filling an important gap in the literature, this comprehensive text develops conformal field theory from first principles. The treatment is self-contained, pedagogical, and exhaustive, and includes a great deal of background material on quantum field theory, statistical mechanics, Lie algebras and affine Lie algebras. The many exercises, with a wide spectrum of difficulty and subjects, complement and in many cases extend the text. The text is thus not only an excellent tool for classroom teaching but also for individual study. Intended primarily for graduate students and researchers in theoretical high-energy physics, mathematical physics, condensed matter theory, statistical physics, the book will also be of interest in other areas of theoretical physics and mathematics. It will prepare the reader for original research in this very active field of theoretical and mathematical physics.

Conformally Invariant Metrics and Quasiconformal Mappings

Conformally Invariant Metrics and Quasiconformal Mappings
Author: Parisa Hariri
Publisher: Springer Nature
Total Pages: 504
Release: 2020-04-11
Genre: Mathematics
ISBN: 3030320685

This book is an introduction to the theory of quasiconformal and quasiregular mappings in the euclidean n-dimensional space, (where n is greater than 2). There are many ways to develop this theory as the literature shows. The authors' approach is based on the use of metrics, in particular conformally invariant metrics, which will have a key role throughout the whole book. The intended readership consists of mathematicians from beginning graduate students to researchers. The prerequisite requirements are modest: only some familiarity with basic ideas of real and complex analysis is expected.

Vertex Operators in Mathematics and Physics

Vertex Operators in Mathematics and Physics
Author: J. Lepowsky
Publisher: Springer Science & Business Media
Total Pages: 484
Release: 2013-03-08
Genre: Science
ISBN: 146139550X

James Lepowsky t The search for symmetry in nature has for a long time provided representation theory with perhaps its chief motivation. According to the standard approach of Lie theory, one looks for infinitesimal symmetry -- Lie algebras of operators or concrete realizations of abstract Lie algebras. A central theme in this volume is the construction of affine Lie algebras using formal differential operators called vertex operators, which originally appeared in the dual-string theory. Since the precise description of vertex operators, in both mathematical and physical settings, requires a fair amount of notation, we do not attempt it in this introduction. Instead we refer the reader to the papers of Mandelstam, Goddard-Olive, Lepowsky-Wilson and Frenkel-Lepowsky-Meurman. We have tried to maintain consistency of terminology and to some extent notation in the articles herein. To help the reader we shall review some of the terminology. We also thought it might be useful to supplement an earlier fairly detailed exposition of ours [37] with a brief historical account of vertex operators in mathematics and their connection with affine algebras. Since we were involved in the development of the subject, the reader should be advised that what follows reflects our own understanding. For another view, see [29].1 t Partially supported by the National Science Foundation through the Mathematical Sciences Research Institute and NSF Grant MCS 83-01664. 1 We would like to thank Igor Frenkel for his valuable comments on the first draft of this introduction.

The Scalar-Tensor Theory of Gravitation

The Scalar-Tensor Theory of Gravitation
Author: Yasunori Fujii
Publisher: Cambridge University Press
Total Pages: 258
Release: 2003-01-02
Genre: Science
ISBN: 1139436023

A pedagogical overview of the theoretical ideas behind the cosmological constant problem, in particular the scalar-tensor theory, which is one of the most popular alternative theories of gravitation. Covering many developments in the field, including branes and quintessence, it will be an invaluable resource for graduate students and researchers alike.